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Abstract: Vegetation regulates the exchange of terrestrial carbon and water fluxes and connects the
biosphere, hydrosphere, and atmosphere. Over the last four decades, vegetation greening has been
observed worldwide using satellite technology. China has also experienced a notably widespread
greening trend. However, the responsiveness of vegetation dynamics to elevated CO2 concentration,
climate change, and human activities remains unclear. In this study, we attempted to explore the
impact of natural (precipitation, air temperature), biogeochemical (CO2), and anthropogenic drivers
(nighttime light, afforestation area) on changes in vegetation greenness in the Haihe River Basin
(HRB) during 2002–2018 at the county-level. We further determined the major factors affecting
the variation in satellite-derived normalized difference vegetation index (NDVI) from moderate
resolution imaging spectroradiometer (MODIS) for each county. The results indicated that over 85%
of the counties had a significantly increased NDVI trend, and the average linear trend of annual NDVI
across the study region was 0.0037 per year. The largest contributor to the NDVI trend was CO2

(mean contribution 45%), followed by human activities (mean contribution of 27%). Additionally,
afforestation was a pronounced driving force for NDVI changes in mountainous areas, resulting
from ecosystem restoration efforts. Our findings emphasize the crucial role of CO2 fertilization in
vegetation cover change, while considering CO2 concentration, climate change, and human activities,
and shed light on the significant influences of afforestation programs on water resources, especially
in mountainous areas.

Keywords: normalized difference vegetation index; afforestation; vegetation restoration; human
activities; climate change

1. Introduction

Vegetation controls the exchange of terrestrial carbon and water cycles between the
ground surface and the atmosphere through photosynthesis. It also alters the momentum
and energy absorption via its physiological properties [1,2]. Carbon uptake by vegetation
is a major CO2 sink on the land. Because vegetation greening and browning are associated
with variations in carbon storage, water availability, surface energy, soil nutrients, terrestrial
hydrometeorology, and eco-hydrological processes, quantifying the reason for vegetation
change has attracted considerable attention from scientists and policymakers [3–6].

Over the last four decades, global greening of vegetated lands has been revealed by
satellite technology [7,8]. China has also undergone a noticeably broad greening trend due
to efficient land-use management [9]. The satellite-based normalized difference vegetation
index (NDVI), which is a reliable indicator of terrestrial vegetation growth, has been widely
applied in diverse studies to reflect vegetation greening across the globe [10–12]. Notably,
long-term changes in vegetation greenness are subjected to multiple factors that interact
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with biogeochemistry, climate, and human-induced land-use change [13]. Biogeochemi-
cal drivers are expressed by CO2 fertilization and nitrogen deposition [14].Temperature,
precipitation, and radiation are the factors representing regional climate change. Land
cover change and land management practices, such as irrigation, fertilization, afforestation,
and grazing are important land-use-related drivers [15]. However, because the causes of
vegetation greenness change are extremely intricate and involve numerous interacting
environmental variables and irregular human land-use patterns, taking all these driving
variables into account is still challenging.

The Intergovernmental Panel on Climate Change sixth assessment report (IPCC AR6)
stated that increases in CO2 concentration due to anthropological reasons have been un-
equivocal since around 1750, and this concentration in the atmosphere is rising continu-
ously [16]. As a substrate for photosynthesis, elevating atmospheric CO2 concentration
can accelerate photosynthesis by enhancing the rate of carboxylation [7,17]. However, the
debate about the relative roles of CO2 fertilization, warming, and land-use management
on greening is still ongoing, due to the limited number of models that involve the entire
process and consider all the parameters [9,15,16].

Moreover, it is difficult to choose indicators that can accurately characterize human ac-
tivities, due to high variations in anthropological activities. Previous studies often selected
gross domestic product (GDP) and population, although they have strong collinearity.
A recent study claimed that the best indicator of human activities was nighttime light
(NTL) [18]. Generally, NTL is regarded as the indicator that reflected the effects of ur-
ban expansion and electricity consumption [19], facilitating a variety of studies related to
monitoring long-term dynamics of human and anthropogenic activities. It is insightful
and practical to include NTL into the investigation of vegetation greening. In addition,
afforestation data have been adopted in several studies to emphasize the great contribution
of ecological restoration projects to vegetation greening in China’s wooded lands [20–22].
However, these studies only used forestry investment or afforestation areas to conduct
statistical analyses and did not estimate the vegetation change in the future. As a result,
in this study, we used the NTL dataset and afforestation areas to capture inconspicuous
human activities and vegetation management programs, respectively.

The contribution analysis of vegetation dynamics that divide the entire impact into
climate change and human activities has been a major concern for hydrologists and ecolo-
gists [7,23,24]. Some studies have taken human activities as a residue part after deducting
climate impacts from the whole impacts [25]. Jiang et al. [11] used a multiple correlation
regression method to determine the response of NDVI to climatic factors, and discrepancies
between the observed and predicted NDVI values were considered as residuals. If the
residuals were significant, fluctuations in the NDVI values were caused by anthropogenic
activities, rather than climate. Wen et al. [26] utilized multiple linear regression to evaluate
the impact of climate factors on the variations in NDVI changes in the Three Gorges Reser-
voir Region of China; in this method, the remaining fraction (one minus R2) was treated as
human-induced NDVI variations. However, these methods consider human activities and
their effects indirectly, and some uncertainty errors are incorrectly included in the contribu-
tion of the human part, which could lead to an overestimation in this part. Recently, it was
recognized that socioeconomic/fundamental natural environmental indicators should be
introduced in attribution analysis frameworks [18,21,23]. Yang et al. [18] built a structural
equation model (SEM) to detect the connection between the NDVI fluctuations and natural
and anthropogenic factors in Jiangsu Province, China. The individual and combined effects
of the elements on the target were quantified using SEM. However, the variables in the
study were calculated by subtracting two years’ data, which may not be representative of
the long-term situation. Meanwhile, the prediction of the target variable through SEM with
latent variables was difficult, and the authors did not consider the influence of CO2 on the
variations in NDVI. Therefore, prediction and attribution analysis will be more complicated
when comprehensively integrating climate change, human activities, and CO2.
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The Haihe River Basin (HRB), covering Beijing–Tianjin–Hebei (Jing–Jin–Ji) provinces,
is a major economic center in China. However, water resources in most sub-basins are
attenuated [27–29]. Water shortage, in particular, has hindered the social and economic
development of this region. To address this issue, the South-to-North Water Diversion
(SNWD) Project was developed to satisfy human water demand by transferring water from
the Yangtze River to the HRB. Simultaneously, the accompanying ecological restoration
projects, such as the Beijing–Tianjin Sand Source Control Program [30], has exacerbated
the water resource conflict between nature and humans [31]. The purpose of vegetation
restoration is to mitigate soil erosion and combat climate change by increasing carbon
storage through afforestation. Nevertheless, it has reduced surface runoff [32], and will
affect the planning and implementation of the East Route of the SNWD. Therefore, dis-
tinguishing vegetation restoration caused by natural climate, elevated CO2 concentration,
anthropogenic ecological restoration, and social and economic development is vital. More
importantly, this can help determine the intensity of ecological restoration projects, along
with the extent of water diversion projects, particularly in developed areas that have a
large population.

In conclusion, understanding the mechanisms underlying NDVI trends is a critical
step towards better understanding the dynamics of terrestrial vegetation [33]. In this study,
we attempted to quantify the impact of natural, biogeochemical, and anthropogenic drivers
on greenness trends indicated by the NDVI in HRB (the most developed areas in China).
Except for climatic factors (air temperature, precipitation, and solar radiation) and the fer-
tilization effects of elevated atmospheric CO2 concentration, two anthropological variables
(afforestation area and NTL) were assumed to represent the human footprint conceptually.
As a result, our aims were to (1) assess the contributions of natural, biogeochemical, and
anthropogenic drivers to NDVI changes from 2002 to 2018 using the partial derivative
equation method, (2) determine the major factors affecting the variations in NDVI in each
county, and (3) predict the future NDVI for the study area over the 21st century.

2. Materials and Methods
2.1. Study Area

The Haihe River Basin is the largest river basin in the North China Plain, located
at 112–120◦E and 35–44◦N (Figure 1). It covers Beijing, Tianjin, Shijiazhuang, and 23
other large and medium-sized cities, encompassing the mountainous regions in the north
and west as well as the plain areas in the south and east [29]. The multi-year average
precipitation of the area was 532 mm, with most of the precipitation received from June
to September (accounting for 75–85% of the total annual precipitation). The multi-year
average air temperature was 10.0 ◦C, which belongs to the continental monsoon climate
zone. The primary land-use types in the basin are grassland, cropland, and deciduous
broadleaf forest (DBF). Grassland is mainly distributed in the mountainous areas, cropland
is located in the plain areas, and woodland covers the low mountainous areas. In China’s
political economy, HRB occupies an important position [22], carrying the development of
the Beijing-Tianjin-Hebei urban agglomeration. Given the high degree of overlap between
HRB and the Beijing-Tianjin-Hebei provinces, the study area comprised a union set of the
two regions. The total area of the study region was 342,697.7 km2.
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Figure 1. Location of the study area, along with 334 county boundaries.

2.2. Data
2.2.1. Past Scenario

In this study, the annual vegetation cover map of the classification scheme based
on the International Geosphere-Biosphere Programme (IGBP) was derived from the land
cover product (MCD12Q1) of the moderate resolution imaging spectroradiometer (MODIS).
The IGBP scheme includes five types of forestlands: evergreen needleleaf forest (ENF),
evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), DBF, and mixed
forest (MF); seven types of grassland: closed shrublands (CSH), open shrublands (OSH),
woody savannas (WSA), savannas (SAV), grasslands (GRA), barren (BRN), and permanent
wetlands (PMW); and two types of croplands: croplands (CRO) and cropland/natural
vegetation mosaic (CRV). Then, we combined this IGBP product into three major vegetation
sets (Table 1): mixed forestland (MF: ENF, EBF, DNF, DBF, and MF), mixed grassland
(MG: CSH, OSH, WSA, SAV, GRA, BRN, PMW), and mixed cropland (MC: CRO, CRV), for
statistical analysis, according to Naeem et al. [34].
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Table 1. Three major vegetation sets based on MCD12Q1 (IGBP) product.

Sets Value Name

Mixed forestland (MF) 1–5

Evergreen needleleaf forest (ENF),
evergreen broadleaf forest (EBF),
deciduous needleleaf forest (DNF),
deciduous broadleaf forest (DBF) and
mixed forest (MF);

Mixed grassland (MG) 6–11, 16

closed shrublands (CSH), open
shrublands (OSH), woody savannas
(WSA), savannas (SAV), grasslands
(GRA), barren (BRN) and permanent
wetlands (PMW);

Mixed cropland (MC) 12, 14 croplands (CRO) and cropland/natural
vegetation mosaic (CRV)

The MODIS-NDVI product (MOD13A1) at 16-day intervals, which was taken as a
proxy for vegetation greening, was extracted from the Google Earth Engine (GEE) platform
(https://code.earthengine.google.com/, accessed on 04 December 2021). Then, the 16-day
NDVI values smaller than zero were excluded, and the annual average NDVI value was
aggregated from the corresponding year’s data.

The meteorological forcing data needed were obtained from the China meteorolog-
ical forcing dataset (CMFD) at the National Tibetan Plateau/Third Pole Environment
Data Center (TPDC) [35]. This data included 2-m air temperature (Tem), downward
shortwave radiation (Rad), and precipitation rate (Pre) with a spatial resolution of 0.1◦

(http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/, accessed on
04 December 2021). The CMFD dataset was developed by integrating data from multiple
sources, such as remote sensing, reanalysis datasets, and in situ observations at weather
stations. This is the first high-resolution meteorological forcing data created in China [36,37]
and is widely used in studies on land surface processes [38], evaporation [39,40], machine
learning [41], vegetation, and phenology [42].

Afforestation statistical data were collected from the China Forestry Statistical Year-
books/China Forestry and Grassland Statistical Yearbook (https://data.cnki.net/Yearbook/
Single/N2021060073, accessed on 04 December 2021). The yearbook provided the annual
area of afforestation (AFF) in each county. Human-induced vegetation restoration projects
shaped by afforestation are the main positive anthropogenic effects that have accelerated the
rate of vegetation greenness in many areas. Previous studies have proved that revegetation
activities enhanced vegetation coverage and had profound hydrological implications [3,5,9].
According to MCD12Q1 (IGBP), not all counties have forests. Therefore, the counties with
MFs in 2018 were judged to have engaged in afforestation strategies. Subsequently, we
collected the data on the annual afforestation areas in these counties. Given that most
afforested species were perennial trees, the accumulative area of afforestation (AAF) was
treated as an indicator to explore the impact of vegetation management/human land-use
management policies (implemented by the government) on the increasing NDVI of the
study area.

NTL is an effective variable for detecting low-level anthropogenic activities [43]. The
NTL data for the study area were integrated by harmonizing the inter-calibrated NTL
observations from the Defense Meteorological Satellite Program (DMSP) data and the
estimated DMSP-like NTL observations from the visible infrared imaging radiometer suite
(VIIRS) data [19,44]. The produced DMSP NTL time-series data (1992–2018) resolved
severe inconsistencies that existed between DMSP (1992–2013) and VIIRS (2012–2018) data
and extended the span of historical DMSP NTL data. The sensors of DMSP and VIIRS
can capture the gleam emission sources on the Earth’s surface at night, thus seizing the
brightness of cities, towns, industrial sites, and expansion of urban traffic, and residences.
In our study, to account for the difference between climate change and human activities,

https://code.earthengine.google.com/
http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
https://data.cnki.net/Yearbook/Single/N2021060073
https://data.cnki.net/Yearbook/Single/N2021060073
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Tem, Rad, and Pre were considered to evaluate the impact of climate change on vegetation
dynamics. Additionally, AAF and NTL were treated as anthropogenic drivers.

The atmospheric CO2 concentration was from CarbonTracker (CT2019B,
https://gml.noaa.gov/ccgg/carbontracker/, accessed on 04 December 2021), developed by
NOAA to track the carbon dioxide globally [45]. CarbonTracker estimated the monthly sur-
face CO2 fluxes at 3◦ × 2◦ from 2000 to 2018, and it was well validated by
Kulawik et al. [46]. A description of the datasets applied in our study is shown in Table 2.

Table 2. Datasets used in this study.

Type Variables Dataset Original Spatial
Resolution

Original
Temporal

Resolution
Source

Land-use/cover MF, MG, MC MCD12Q1 (IGBP) 500 m yearly NASA LPDAAC
Vegetation index NDVI MOD13A1 500 m 16-day NASA LPDAAC

Meteorological factors Tem, Pre, Rad CMFD 0.1◦ hourly TPDC

Anthropogenic factors AFF Statistical
yearbooks County yearly National Bureau

of Statistics
NTL DMSP NTL 1 km yearly [19]

Atmospheric CO2
concentration CO2 CarbonTracker 3◦ × 2◦ monthly NOAA

Due to the availability of the above-mentioned data, the time resolution of each
dataset was uniformly based on an annual scale from 2002 to 2018, and the spatial scale was
aggregated at the county level to match the scope of afforestation data from the yearbooks.

2.2.2. Future Climate Data

The future climatic forcing (precipitation, surface air temperature, and surface down-
welling shortwave radiation) from five global climate models (BCC-CSM2-MR, CAS-ESM2-
0, FGOALS-f3-L, GFDL-ESM4, and MRI-ESM2-0– all r1i1p1f1 ensemble members) were
selected to predict the NDVI of the study area under three shared socioeconomic pathways
(SSPs), namely SSP126, SSP245, and SSP585 [47]. These models belong to the scenario
model intercomparison (ScenarioMIP), which is part of the Coupled Model Intercom-
parison Project Phase 6 (CMIP6, https://esgf-node.llnl.gov/search/cmip6/, accessed on
04 December 2021). Notably, SSPs work in harmony with representative concentration
pathways (RCPs) through shared policy assumptions, implying that future scenarios are
more reasonable [48]. Bias correction was conducted through the relationship between
observed values and historical values by linear regression for precipitation, surface air
temperature, and shortwave radiation, respectively, from 1979 to 2014. The slope of the
regression was used to rescale the future data from 2020 to 2100. Whether NDVI will
continue to increase in the future without artificial afforestation was evaluated using future
scenarios from 2020 to 2100. Information regarding the models is shown in Table 3.

Table 3. List of global climate models of CMIP6 used in this study.

Model Name Producer Nation Grid Number

BCC-CSM2-MR Beijing climate center China 160 × 320
CAS-ESM2-0 Chinese academy sciences China 128 × 256
FGOALS-f3-L Chinese academy of sciences China 180 × 288

GFDL-ESM4 Geophysical fluid dynamics
laboratory USA 180 × 288

MRI-ESM2-0 MRI (meteorological research
institute) Japan 160 × 320

https://gml.noaa.gov/ccgg/carbontracker/
https://esgf-node.llnl.gov/search/cmip6/
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2.3. Methods

To estimate the effects of CO2 concentration, climate change, and human activities on
NDVI variation, an analytical framework of attribution analysis [49,50] was adopted. The
multivariate function describing the relationship between NDVI and driven factors can be
expressed as follows:

NDVI = f (Tem, Pre, Rad, AAF, NTL, CO2) (1)

where Tem is the air temperature (◦C), Pre is the precipitation (mm/yr), Rad is the solar
radiation (W/m2), AAF is the accumulative area of afforestation (hm2), NTL is nighttime
light (dimensionless), and CO2 is atmospheric CO2 concentration (ppm). We assumed that
there is a linear formulation between NDVI and the driving variables, and the first-order
partial derivative equation is deduced as follows:

dNDVI =
(

∂NDVI
∂Tem dTem + ∂NDVI

∂Pre dPre + ∂NDVI
∂Rad dRad

)
+

(
∂NDVI
∂AAF dAAF + ∂NDVI

∂NTL dNTL
)

+
(

∂NDVI
∂CO2

dCO2

)
+ ε

(2)

dNDVI
dt =

(
∂NDVI

∂Tem
dTem

dt + ∂NDVI
∂Pre

dPre
dt + ∂NDVI

∂Rad
dRad

dt

)
+

(
∂NDVI
∂AAF

dAAF
dt + ∂NDVI

∂NTL
dNTL

dt

)
+
(

∂NDVI
∂CO2

dCO2
dt

)
+ ε

(3)

where dNDVI
dt , dTem

dt , dPre
dt , dRad

dt , dAAF
dt , dNTL

dt , and dCO2
dt are the slopes of the annual Tem,

Pre, Rad, AAF, NTL, and CO2 from 2000 to 2018. ∂NDVI
∂Tem , ∂NDVI

∂Pre , ∂NDVI
∂Rad , ∂NDVI

∂AAF , ∂NDVI
∂NTL ,

and ∂NDVI
∂CO2

are the ridge regression coefficients of the annual Tem, Pre, Rad, AAF, NTL,
and CO2 with NDVI, respectively [1]. The parameter value of ridge regression with the
lowest GCV (cross validation criteria) was chosen as the optimal value. It was set to 2 in
this study. As given in Equation (3), the absolute change in NDVI is a linear sum of the
absolute changes in Tem, Pre, Rad, AAF, NTL, and CO2.

We used Tem, Pre, and Rad to describe the elements of climate change, whereas AAF
and NTL were employed to convey the composition of human or social activities. Thus, the
contribution of climate change (CLI), human activities (HUM), and CO2 to the variation in
NDVI can be expressed as follows:

Slope o f NDVI = CLI + HUM + CO2 (4)

RC = 100 ∗ CLI
|CLI|+ |HUM|+ |CO2|

(5)

RH = 100 ∗ HUM
|CLI|+ |HUM|+ |CO2|

(6)

RCO2 = 100 ∗ CO2

|CLI|+ |HUM|+ |CO2|
(7)

where RC, RH, and RCO2 (%) represent the relative contribution rates of climate change, hu-
man activities, and elevated atmospheric CO2 concentration to NDVI variation, respectively.

3. Results
3.1. Changes in NDVI and Its Factors

At the city level, the NDVI values in 2018 were higher than in 2002 across all counties
(Figure 2a). The linear trends of the annual NDVI in each district during 2018 and 2002
are plotted in Figure 2b. Across the study region, the average linear slope of the annual
NDVI was 0.0037/yr. More than 85% of counties experienced a significant upward trend,
and the trend was over 0.004 per year among 45% of the counties. The land cover map of
the study area in 2002 based on MCD12Q1 (IGBP) is shown in Figure 3a. The study area
was reclassified as MG, MC, MF, along with other types (urban/barren/water bodies). We
calculated the difference between the NDVI in 2002 and 2018 for different land-use types
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(Figure 3b–d). In general, there was an increase in MG, MC, MF. Between 2002 and 2018,
44.01% of grassland area, 61.07% of cropland area, and 32.33% of forestland area had an
increment of over 0.06.
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From 2002 to 2018, climate change exhibited a warming-wetting trend in the study
area. The upward slopes of Pre and Tem are 2.16 mm/yr (p > 0.05) and 0.03 ◦C/yr
(p > 0.05), respectively (Figure 4a–b). Spatially, Pre increased in 70.06% of the area, but
only 5.35% of the area increased significantly (p < 0.05). Pre showed significantly ascending
trends in Beijing and Shanxi province, and the largest trend occurred in Wutai county,
reaching 12 mm/yr. Areas with increasing Tem accounted for 80.24% of the total. The trend
of significantly increasing Tem mainly appeared in the south, in 28.44% of the total area,
whereas the significantly decreasing trend occurred in only 0.9% of the area. Shanhaiguan
district portrayed the largest significantly increasing Tem trend (0.13 ◦C/yr). Areas with a
declining Tem mainly existed in the northern and central regions of the study area. For Rad,
an average downward trend (−0.12 W/m2) was noticed (p > 0.05). Spatially, Rad showed
a positive trend in the north and a negative trend in the central and southern regions
(Figure 4c). Rad significantly increased in 8.28% of the total area, whereas it significantly
declined in 16.47% of the total area. Generally, the study area experienced apparent climate
change across the entire region, with a warming-wetting-dimming trend.
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Furthermore, a downward trend was found in AFF (−32.77 hm2/yr, p < 0.05) and
an upward trend was detected in the NTL (0.31 per year, p < 0.05) from 2002 to 2018
(Figure 4d–e). The majority of artificial afforestation was concentrated in the mountainous
areas. In 20.69% of the area, there was a significant negative trend in afforestation areas.
Despite the fact that the afforestation area is reducing, the accumulative growth of perennial
trees cannot be overlooked. Therefore, we used AAF in the attribution analysis. Overall,
significantly upward trends in NTL occupied over 82% of the regions, which were widely
dispersed in plain and hilly areas, whereas significantly downward trends were observed
in only 0.6% of the areas. As a representative of social development and population
density, enhanced NTL indicated that social economic activities were intense during the
study period.

Figure 4f reveals sharp rises in CO2 concentration across the study area. Vegetation
responds to CO2 by controlling the opening and closing of stomata. Elevated CO2 can
accelerate photosynthetic rates, thereby improving vegetation productivity. As a result, the
change in CO2 concentration, which is treated as a crucial factor, was considered in the
attribution analysis conducted in our study.

3.2. Estimation of NDVI

Before the attribution analysis, we tested the efficiency of Equation (3) in predicting
annual NDVI value trends. As shown in Figure 5, the simulated slopes driven by six factors
were consistent with the MODIS-derived slopes across 334 counties over the study period.
The R2 value between the estimated trends and observed trends was 0.96, and the root
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mean square error was 10% per year, illustrating that the established model performed
well. Therefore, we believe that this analytical framework was appropriate for confirming
the changes in NDVI.
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Figure 4. Interannual linear trends of (a) precipitation rate, Pre; (b) 2-m air temperature, Tem; (c)
downward shortwave radiation, Rad; (d) area of afforestation (AAF); (e) nighttime light (NTL); and (f)
CO2 from 2002 to 2018. Significant trends indicate p-value < 0.05. The histogram in each panel shows
the frequency of various trends, and the negative/positive values represent the decreased/increased
trends. White color means no data in this county.

3.3. Contribution of CLI, HUM, and CO2

The contributions of the six driving variables to the changes in the annual NDVI were
estimated by equation using Equation (4). The actual contributions of CLI, HUM, and CO2
to variations in NDVI exhibited remarkable spatial heterogeneity (Figure 6A–C).

The contribution of CLI ranged from −20% to 85% and was larger in the surrounding
areas of Tianjin. The positive effects of Pre on NDVI trends were displayed in Beijing, the
western part of Hebei Province, northern part of Shanxi Province, and the Inner Mongolian
province (Figure 6a). The positive contribution of Pre to NDVI trends was largest in the
Inner Mongolian province, with a value of >25%, and the negative contributions were
relatively minor, with a value around −10% in the south-eastern area. Croplands cover a
substantial portion of the south-eastern region, which had a negative influence. Because of
irrigation activities, the natural response of precipitation-soil moisture is disturbed, and
the water stress is mitigated, thus creating a low negative contribution of precipitation
to the NDVI. Generally, the contribution of Tem to NDVI trends ranged from −40% to
65%, with a mean of 9.26% (Figure 6b). Approximately three-quarters (76.12%) of the
study area located in the south-eastern area, exhibited a positive contribution, especially
in Tianjin, Shijiazhuang in Hebei Province, and Anyang city in Henan Province (>50%).
The negative effects of Tem on NDVI trends appeared in most areas of the north-western
region, particularly in Baoding and Tangshan in Hebei Province (<−10%). Additionally, the
mean contribution of Rad to the NDVI trends was 3.17% (Figure 6c). Over 60% of the areas
showed a positive contribution, with a maximum value of 45.24%. Relatively large negative
contributions (<−5%) were observed in the southern and central parts of the entire region.
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The contribution of HUM showed a large variability, ranging from −55% to 86%. Due
to the greater impact of afforestation, HUM was larger in mountainous areas than in plain
areas, and it presented a negative effect in plain areas that were primarily controlled by
NTL. Afforestation was regarded as a factor, which exerted a greater influence on NDVI
in the form of land-use management. In the forested area, the impact of AAF on NDVI
presents a positive contribution, with a range of 0–72% (Figure 6d). More than 20% of
the counties located in the mountains area had contributions above 40%. The relatively
high contributions mainly follow the direction of the mountains, indicating the essential
role of vegetation restoration in NDVI changes in the mountainous regions. Moreover, a
part of the effect of human activities on NDVI reflected by NTL showed obvious spatial
diversity, resulting from the different levels of urbanization and industrialization (Figure 6e).
Cangzhou, Hengshui, and Shijiazhuang of Hebei Province as well as Wulan and Chifeng in
the Inner Mongolian province had a positive effect that exceeded 50%. Likewise, nearly
40% of the places concentrated on the plain showed negative individual contribution. The
largest effect could reach −55% in the Shijiazhuang’s Yuhua district.

The impact of elevated CO2 concentration on the NDVI was almost positive across
the whole region, with an average contribution of 46% (Figure 6C). In mountainous areas,
located in the northeast region, the majority of contributions were less than 35%. In most of
the south-eastern regions of the study area covered by croplands, the contributions were
more than 50%, indicating that the carbon sequestration capacity of croplands was stronger
than of other land-use types.
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Figure 6D summarizes the contribution of each indicator at the provincial level. Ele-
vated CO2 concentration showed the highest proportional contribution to NDVI change
(mean contribution: 45.60 ± 16.68%), and human activities that enhanced vegetation status
through afforestation projects ranked second only to CO2 concentration (mean contribution:
27.74 ± 14.57%). In mountainous areas, the contributions to NDVI were as follows: CO2
(mean contribution: 38.18 ± 23.00%) > AAF (mean contribution: 23.60 ± 19.84%) > NTL
(mean contribution: 14.93 ± 17.86%) > Pre (mean contribution: 5.05 ± 7.03%) > Tem (mean
contribution: 5.45 ± 11.98%) > Rad (mean contribution: 2.34 ± 6.67%). Consistent with
mountainous areas, the contribution of CO2 to NDVI was still the greatest value in the
plain area (mean contribution: 51.48% ± 32.23%), followed by Tem (mean contribution:
12.05% ± 16.39%), NTL (mean contribution: 6.68% ± 17.37%), Rad (mean contribution:
3.61% ± 9.19%), AAF (mean contribution: 6.11% ± 15.21%), and Pre (mean contribution:
2.27% ± 5.36%). It is noteworthy that the contribution of afforestation in mountainous
areas is highlighted as a result of vegetation greening efforts.
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3.4. Dominating Factor of NDVI Variance

The element with the largest absolute contribution rate was identified as the dominant
factor that contributed to the changes in NDVI. As shown in Figure 7a,b, CO2 and AAF
controlled the increase in NDVI across most areas of the study region. In mountainous
areas, the growth in NDVI was dependent on CO2 and AAF. At the same time, CO2 was
also the principal driving force for enhanced NDVI in plain areas. The dominant driving
elements of decreased NDVI were Tem and Rad, especially in the mountainous areas.
Rapid urban expansion reduced the NDVI in the plain, and the detrimental influence of
urban expansion on NDVI change was revealed via NTL. Subsequently, we integrated
the driving contributors into CLI, HUM, and CO2, as shown in Figure 7c. Overall, CO2
was the dominant contributor to the greening trend in more than 54% of counties, and
HUM was the driving contributor in over 33% of the 334 counties (Figure 7c,d). The
positive effects of HUM in the northern and western mountainous areas were attributed to
vegetation restoration programs, which conserved and expanded forests to mitigate land
degradation. However, the greening of the plain areas was primarily driven by elevated
CO2 concentration.
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NDVI decrease. (c) Spatial distribution of driving contributors (CO2: rising CO2, CLI: climate change,
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contributors over mountainous and plain areas. The label at the top of the bar is the fraction of
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trends, whereas ‘−’ indicates a negative effect.
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3.5. Future NDVI

We used the mean value in the whole region from CMIP6 data to predict the future
regional NDVI (2020–2100). Notably, we assumed that afforested projects and urban
explosions would not be experienced in the future, due to the limitation of future data. That
is, we held that the AAF and NTL values measured in 2018 would remain unchanged during
the future period, and then, the NDVI values were simulated under different scenarios. The
results are presented in Figure 8. SSP126 describes a future pathway combined SSP1 (low
challenges for adaptation and mitigation) with RCP2.6 (low emission scenarios). Blending
SSP2 (a medium challenge of both) with RCP4.5 (medium emission scenarios) is described
by SSP245. SSP585 comprises SSP5 (high challenges to mitigation and low challenges to
adaptation) and RCP8.5 (high emission scenarios). Future CO2 concentration was from
O’Neill et al. [47]. By 2060, the mean value of NDVI under the scenario of SSP126 shows an
increase trend, before decreasing by 2100. The predicted value from the SSP245 scenario
rises steeply before 2080, and then remains the same. Furthermore, the estimated NDVI
from the SSP585 scenario grows dramatically throughout the entire period.
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4. Discussion
4.1. Causes of NDVI Change

Climate is generally identified as an important natural factor that influences vegetation
growth [51]. Sun et al. [22] used the SPOT NDVI dataset to investigate the characteristics
of variations in vegetation and assess the impacts of climate change (air temperature and
precipitation) and human activities (afforestation area and urbanization) on vegetation
cover change in the Haihe River Basin from 2000 to 2013. However, they did not quantify
the contribution of human activities and conjectured that the change in NDVI was primarily
attributed to the increase in precipitation. Similarly, Yu et al. [31] applied multiple regression
models to predict the NDVI of Beijing–Tianjin–Hebei provinces in China, based on climatic
factors, during the growing season from 2000 to 2017, and admitted the dominant position
of precipitation and temperature for vegetation growth. However, because climate factors
and human activities are highly blended, precipitation and air temperature do not always
provide a decisive explanation on NDVI change. In our study, the positive effects of
precipitation on NDVI trends were displayed in the north-western area (Figure 6a). The
negative contributions in the south-western area covered by croplands were relatively
minor. It may be caused by irrigation activities that disturb natural response of precipitation-
soil moisture, creating a low negative contribution of precipitation to the NDVI. Therefore,
the causes of NDVI changes are complicated [52].

Some studies have shown that socioeconomic activities were important for vegetation
greenness. Zheng et al. [20] investigated the impacts of climate (temperature and precipi-
tation) and human activities (population, GDP, and forestry investments) on vegetation
variations using the geodetector method. They discovered that socioeconomic factors were
the dominant driving forces of vegetation change for the typical areas in China. Lü et al. [53]
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analyzed vegetation change in China during 2000–2010 under the driving forces of climate
and socioeconomic factors using linear regression. The results showed that the most sig-
nificant elements for vegetation change were socioeconomic factors (human population
and economic production). In this study, we found that anthropogenic drivers reflected
by NTL have the spatial variation. There was a negative contribution to NDVI in the
south-eastern area and a positive contribution in the north-western area. The negative
impact was attributed to urban expansion and industrialization, which is consistent with
the general understanding. However, the positive impact on rural areas located in the
north-western area indicated that some human activities boosted ecosystem functions
for those areas. Wang et al. [54] pointed out that urbanization development would be
favorable to vegetation growth when the NTL value was lower than 15, which coincided
with Figure S1f in our study. We also found that the effect of urbanization on vegetation
coverage was positive when the NTL value was higher than 55, such as in the north-west of
Beijing and the surroundings of Tianjin in our study. This phenomenon can be explained by
Wang et al. [55]: when a city attained a certain development level, people were willing to
devote more resources and efforts to improving vegetation coverage and climate for a better
living environment [56]. Therefore, we present three reasons for the positive impact of NTL
on NDVI in HRB: (1) the development of modern agriculture was enhanced; (2) people and
governments were willing to devote more resources to improve the environment for better
living conditions, and more vegetation and a favorable climate would attract more human
settlement; (3) urbanization development would be in favor of vegetation growth when the
NTL value was lower than 15 or higher than 55.

Nevertheless, numerous studies did not focus on the role of CO2 [57]. As a primary
substrate for photosynthesis, the increase in atmospheric CO2 concentration is expected
to enhance photosynthesis and improve productivity through CO2 fertilization [14]. In
semi-arid areas, plants strategically close their stomata to preserve water and increase water
use efficiency to improve photosynthesis [58]. Therefore, the effects of CO2 on plants are
complex and cannot be overlooked. Recently, the importance of CO2 in vegetation change
has been a central concern, although the dominant effect of CO2 fertilization on vegetation
growth has been debatable [59–61]. Factorial simulations with multiple ecosystem models
implied that CO2 fertilization effects explained 70% of the satellite-observed leaf area index
(LAI) trend globally [7,15]. Changes in the vegetation structure and CO2 fertilization offset
the decrease in gross primary productivity (GPP) caused by reduced solar radiation [62].
Rising air temperature and CO2 promoted the GPP, but the contribution of CO2 was greater,
more than 50% over the Tibetan Plateau [63]. Pang et al. [64] used model experiments
based on a machine learning method suggested that the CO2 was the most important factor
to the increasing trend of NDVI across the temperate semi-arid grassland of China from
1982–2015. The relative contribution can be up to 87.2%. Compared with these studies,
we especially focused on the influence of CO2 and afforestation on NDVI, which has not
been done in the HRB before. CO2 increases have a strong positive impact on the whole
region. Very few negative impacts exist. The reason for the larger positive impact in the
south-eastern area is that the carbon sequestration capacity of croplands located in the
south-east was stronger than that of other land-use types. The results of our work were
reasonable and indicated that CO2 dominated the NDVI trend in more than 50% of counties,
and HUM drove over 30% of the 334 counties (Figure 7d). Therefore, our study provides
new insights into the attribution of vegetation greening in the HRB.

4.2. Impact of NDVI Change

Vegetation projects have been proven to ameliorate land degradation [65,66], and
lower surface temperatures [67], but they also induce a strain on hydrology [32,68,69]
and water resources [5]. Vegetation changes alter the surface thermal properties, namely
surface albedo and emissivity, and the subsequent radiation budget [70]. Feng et al. [71]
identified that a 1% increase in NDVI decreased the albedo by −0.003 ± 0.001%, and NDVI
change contributed to 53.36% additional increase in net radiation globally. Vegetation
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greening inevitably modulates the water cycle [32]. Water losses from the land surface
to the atmosphere through evapotranspiration, including transpiration from leaves and
evaporation from bare ground. Greening increases vegetation transpiration and reduces
soil evaporation [72]. To a certain extent, planting trees will enhance the water retention
capacity of the surface, but greening-induced ecological water consumption has been
found to be the primary cause of streamflow reduction and soil drying [66,73]. HRB, as
an economic center, accounts for nearly 10% of the total population in China. Generally,
human withdrawals are subtracted from the surface and groundwater. Water scarcity as a
consequence of runoff reduction has emerged as an urgent and critical challenge for social
and economic development.

In this study, we simulated that if vegetation restoration is not continued in the future
(2020–2100), NDVI will continue to rise under SSP245 and SSP585 scenarios. It indicated
that if we have no afforestation activities in the future, the vegetation will be greener than
the current level. Although afforestation can help slow climate warming by sequestrating
carbon, the program and management of ecological conservation and restoration require
more thought and trade-offs in terms of water resources and hydrology.

4.3. Limitations

The study presented here has several limitations. First, we did not consider the impact
of vapor pressure deficit (VPD) on NDVI and suggest that VPD characteristics can be
reflected by precipitation and air temperature. In addition, because the survival rate of the
planted trees is difficult to confirm, we simply added up the AAF year by year.

Second, we assumed that there was a linear relationship between NDVI and driving
factors to simplify the model. The possible non-linear relationship and non-linear pat-
tern of NDVI (saturation effect) were ignored. However, due to small biases shown in
Figure 5, we hypothesized that the non-linear relationship would not have a significant
impact on the conclusions. The bias increased under conditions of increasing NDVI trends,
which indicated that the reason for the larger NDVI change was relatively complicated.
These biases may be caused by the non-linear relationship and other factors, including
constructions of rubber dams and terraces, nitrogen fertilization, changes in crops planted,
soil/seed improvement [52], and changes in clouds and aerosols, but elevations about these
factors were not incorporated in the study. For example, in mountainous areas, cropland
areas have expanded, and water-soil conservation projects (rubber dams and terraces) have
reduced water runoff and preserved soil moisture and soil organic carbon, which is also
the reason for the increase in greening. In addition, it should be noted that the NDVI trends
attributed to CO2 concentration in the model may also be true for these environmental
parameters that are increasingly linear [74]. For these terms, more work will be conducted
in the future.

5. Conclusions

In this study, we quantified the impact of natural, biogeochemical, and anthropogenic
drivers on greenness trends indicated by the NDVI in the HRB region (the most developed
areas in China), determined the major factors influencing the variations in NDVIs for each
county, and predicted the future NDVI for the 21st century. As expected, more than 85%
of the 334 counties considered in our study showed a significant increasing trend, and
the trend in 45% of counties was greater than 0.004 per year. In mountainous areas, the
growth of NDVI was dependent on CO2 and AAF. CO2 was also the principal driving
force for enhancing NDVI in plain areas. Overall, CO2 was the dominant contributor to the
greening trend in more than 54% of the counties, and HUM was the driving contributor in
over 33% of the counties. Notably, afforestation projects played a crucial role in vegetation
greening in mountainous areas, resulting from vegetation restoration activities. We further
examined the future NDVI (2020–2100) by applying CMIP6 data under the SSP126, SSP245,
and SSP585 scenarios and found that the NDVI will continue to rise due to the elevated
CO2 concentration if vegetation restoration is not continued. Vegetation projects have
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induced a strain on hydrology and water resources, and may exacerbate the water conflict
between nature and humans, particularly in developed areas. Therefore, the program
and management of ecological conservation and restoration require more thought and
trade-offs, even though these strategies can boost carbon sequestration.

Our study provides essential insights into the present vegetation restoration and
land-use management programs implemented by the HRB’s local government, and it
serves to fulfill the natural sustainability of the region under conditions of elevated
CO2 concentrations.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs14020268/s1. Figure S1: Scatter of correlation coeffi-
cient (CC) between mean NDVI and (a) Pre: precipitation; (b) Tem: air temperature; (c) Rad: solar
radiation; (d) CO2; (e) AAF: afforestation area; (f) NTL: nighttime light at each county. Asterisks
indicate p-value < 0.05.
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