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A recent surge in global warming is not
detectable yet

Check for updates

Claudie Beaulieu 1 , Colin Gallagher2, Rebecca Killick 3, Robert Lund4 & Xueheng Shi5

The global mean surface temperature is widely studied to monitor climate change. A current debate
centers around whether there has been a recent (post-1970s) surge/acceleration in the warming rate.
Here we investigate whether an acceleration in the warming rate is detectable from a statistical
perspective. We use changepoint models, which are statistical techniques specifically designed for
identifying structural changes in time series. Four global mean surface temperature records over
1850–2023 are scrutinized within. Our results show limited evidence for a warming surge; in most
surface temperature time series, no change in the warming rate beyond the 1970s is detected despite
the breaking record temperatures observed in 2023. As such,weestimate theminimumchanges in the
warming trend required for a surge to be detectable. Across all datasets, an increase of at least 55% is
needed for a warming surge to be detectable at the present time.

Global mean surface temperature (GMST) series are crucial for monitoring
global warming. The warming can be quantified by a change from a base
period (e.g. pre-industrial), or by the rate of change (the warming rate) over
a time interval1. The GMST naturally fluctuates in time, displaying short
periods of accelerated or decelerated warming (Fig. 1). Considerable
attention has focused on changes in the warming rate in the scientific
literature and news media, with episodes of accelerated/decelerated
warming (i.e., surges and slowdowns) being recently debated2–7. These
fluctuations may happen in the presence of long-term warming8,9 and can
arise due to short-term variability (or noise) in the surface temperatures.
Here, trend means the long-term change in mean temperatures and noise
contains fluctuations about the trend.

Noise in temperature series is often characterized by a short-memory
process such as an autoregression. In this and other short-memory models,
the ocean and other slow climate component systems respond to random
atmospheric forcing slowly, producing variability at time scales longer than
that of white noise10. Short-memory fluctuations can be large enough to
temporarily mask a long-term warming trend, creating the appearance of a
slowdown. They can also exacerbate a warming trend, mimicking a surge11.
The key question is whether these fluctuations are occurring without any
change in the underlying warming trend, or whether there has been an
increase (warming surge) or decrease (warming slowdown) in the trend. To
answer such questions, one needs to model the short-term variability in
the GMST.

Several studies suggested that a slowdown in warming (the so-called
hiatus) occurred in the late 1990s and investigated its causes3. The slowdown

was attributed to several factors, including large-scale variability in the
Pacific Ocean12–16 and external forcings15,17,18. However, studies focusing on
the detection of this warming pause showed that the rate of change had not
declined, and that this period (from approximately 1998–2012) was not
unusual given the level of short-term variability present in the data11,19–22.
More specifically, studies analyzing GMST using changepoint detection
methods, which are specifically designed to objectively detect the timing of
trend changes, showed no warming rate changes circa 199811,19,21. Further, a
study assuming that the changepoint time is known and took place in
1998 showed that the trends before and after 1998 were statistically
indistinguishable22. Overall, evidence for a pause or slowdown circa 1998
lacked a sound statistical basis.

As per the Intergovernmental Panel on Climate Change (IPCC),
detection of change refers to the “process of demonstrating that climate or a
system affected by the climate has changed in some defined statistical sense
without providing a reason for that change”23,24. Typically, the process of
attribution requires that a change is statistically detected23.

The major agencies monitoring GMSTs all rank 2023 as the warmest
year since the start of the instrumental record commencing in 185025–28.
Clearly, global warming has not paused, and the current discussion about
the rate of warming in the news media and literature has shifted to whether
there has been a warming acceleration2,4,5,29,30. For example29, suggests that
the warming rate has increased since 1990 due to a global increase in the
Earth’s energy imbalance (the difference in incoming solar radiation and
infrared radiation emitted to space)31–33. Another recent study predicts an
acceleration in the warming rate after 20102. With lessons learned from the
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hiatus, debate still fresh, we assess whether a warming surge is statistically
detectable.

Changepoint techniques are used here to assesswhether there has been
a warming surge since the 1970s, and if so, to estimate when the surge(s)
started (see Methods). Piecewise linear regression models that allow for
trend changes are fitted to GMST datasets and assessed via changepoint
techniques. When one does not a priori know the time of any changes,
which is the case here, changepoint methods account for the number of
possible different places where a new regime can begin, preventing over-
stating statistical significance by “cherry-picking” the location of the
changepoint times. This is a critical statistical point. Alongside this, two
types of changepointmodels are used: discontinuousmodels where process
means in the different regimes of the linear regression do not necessarily
connect, and continuous models where the process means in successive
regimes connect.While a continuousmodel ismore physically realistic for a
globally averaged GMST21, discontinuous fits are also provided as a sensi-
tivity to model choice; a discontinuous model may approximate a con-
tinuous change in annual measurements. Our model fits are assessed by
verifying whether the residual assumptions are met (see Supplementary
Information). FourGMST records are analyzed at the annual time scale (see
Methods). The Berkeley, HadCRUT, and NOAA series range from 1850 to
2023, while the NASA series covers 1880 to 2023. Since little evidence of a
surge is concluded, a simulation study investigates how many additional
years of GMST observations will be needed before a change in the warming
rate becomes detectable.

Results
Can we detect a warming surge yet?
Continuous anddiscontinuousmodelswerefitted to all annualGMSTseries
(see Methods). Model fits and timings of any found changepoints are listed
in Table 1 and illustrated in Fig. 1. For the continuous model, a single
changepoint is detected near 1970 in all datasets (Fig. 1a). Similarly, we find
one changepoint in all datasets for the discontinuous models (Fig. 1b).

While the timings detected are slightly earlier for the discontinuousmodels,
both cases donot indicate any changes in trend after the 1970s.We allow the
first-order autocorrelation parameter to vary between segments in the fits
presented in Fig. 1a, b because a previous study that analyzed global surface
temperature time serieswith changepoint detection suggested a reduction in
autocorrelation after the 1960s11. A changing autocorrelation allows us to
better capture the larger serial autocorrelation in surface temperatures in the
earlier part of the record. To assess sensitivity of our results to this choice, we
also include continuous and discontinuous models fitted with fixed auto-
correlationparameters (same in all regimes) (SupplementaryNote 1).While
there is variability in the number and timings of changes in the earlier part of
the record, no warming surge is detected beyond the 1970s (Supplementary
Figs. 1 and 3). With a changing autocorrelation, assumptions on the resi-
duals seem valid both for the continuous and discontinuous models, but
there ismore leftover autocorrelation in the residualswhen imposing afixed
AR(1) autocorrelation (Supplementary Note 2; Supplementary Fig. 2;
Supplementary Table 1).

To illustrate howa change in assumptions can yield false detections, we
also fitted a discontinuous model that does not take into account auto-
correlation (assuming independent errors) on the HadCRUT dataset (see
Fig. 2). We include this model here to emphasize that ignoring auto-
correlation can lead to spurious detection of changepoints. In fact, multiple
spurious changes in the rate of warming are detected after 1970 with this
model. A warming acceleration in the 1970s is detected, followed by a
different regime with a similar trend starting in 2000, and finally an accel-
eration in warming in 2012. Similar results are found in the other datasets
(Supplementary Fig. 4). However, these fits are not valid as residuals are all
strongly autocorrelated (Supplementary Fig. 5; Supplementary Table 1).
This illustrates how changepoint analyses can produce substantially dif-
ferent results if autocorrelation is ignored11,34,35. Furthermore, false detection
issues are exacerbated with discontinuous fits that tend to enhance the
impression of a change in trend21.

We focusonwhether therehasbeena change in thewarming trend, but
here we also quantify how unusual the 2023 observed temperature is. In
Fig. 3, we fit a continuous model with changing autocorrelation (same
model as inFig. 1a)withholding 2023.We thenuse thismodel tomake a one
step prediction for 2023, representing the expected anomaly considering a
continued trend in warming and observed autocorrelation in the four
respective datasets. The observed 2023 anomalies are much larger than the
predicted values (Fig. 3). More specifically, the observed anomalies for 2023
are all in the 99th percentile when compared to the statistical predictions
and their associated standard errors, indicating a large departure from the
ongoing warming trend.

Howmany years are needed to detect a surge?
The fitted models suggest that no changepoints (surges or pauses) have
occurred after the 1970s in the GMSTs analyzed. However, it would be
somewhat naive to categorically conclude that no surge has occurred since it
is possible that the change in trend is too small or that there is not yet enough
data for statistical detection. In this section, we consider how far into the

Fig. 1 | GMST anomalies from four datasets with
superimposed piecewise linear model fitted
trends. GMST anomalies are from NASA (blue),
HadCRUT (yellow), NOAA (red), and Berkeley
(grey) with fitted trends (thick lines) for
A continuous models with changing autocorrela-
tion, B discontinuous models with changing auto-
correlation. Note: the model fits only show the trend
in different regimes.
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Table 1 | Changepoints detected in four global mean surface
temperature datasets within continuous and discontinuous
changepoint models

Dataset Continuous Discontinuous

NASA 1973 1963

0.004, 0.020 0.004, 0.019

HadCRUT 1973 1963

0.003, 0.018 0.003, 0.019

NOAA 1967 1963

0.002, 0.017 0.001, 0.018

Berkeley 1970 1963

0.003, 0.019 0.003, 0.020

Trends before and after the changepoint are presented below the changepoint year (in ∘C/year).
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futureGMSTmust be observed and how large a surge is needed to identify a
statistically significant change at the current warming rate.

With the HadCRUTGMST from 1970–2023, we computed how large
a surge would need to be to become statistically detectable at the
α = 0.05 significance level (seeMethods). Elaborating, during the 1970–2023
period, themaximumdifference in trends occurs in 2012,with the estimated
segments being 1970–2012 and 2013–2023, respectively. Enforcing con-
tinuity between the two regimes, the estimated trends are 0.019 ∘C/year (first
segment) and 0.029∘C/year (second segment), a 53% increase. Accounting
for the short-term variability in the HadCRUTGMST over 1970–2023 and
the added uncertainty for the changepoint location, the second segment
(2013–2023) would need a slope of at least 0.039∘C/year (more than a 100%
increase) to be statistically different than 0.019 at the α = 0.05 significance
level right now. The estimated slope of 0.029 ∘C/year falls far short of this
needed increase. While it is still possible there was a change in the warming
rate starting in 2013, theHadCRUTrecord is simplynot long enough for the
surge to be statistically detectable at this time.

Figure 4 shows the magnitude of trend change required for different
potential changepoint locations from 1990 to 2015 and extending the time
series from 2024 until 2040. The changepoint times considered encompass
surge timings suggested in the scientific literature and media2,4,29. For
example, to detect a warming surge that starts in 1990 over the period of
1970–2024, themagnitudeof the surgeneeds tobe at least 67%relative to the
1970–1990 trend. This is equivalent to a change of trend from 0.018 ∘C/year
over 1970–1990 to 0.030 ∘C/year over 1991–2024. If observations are
extended into the future until 2030, the minimum surge detectable is 61%,
becoming 55% by 2040.

To detect a surge starting in 2008 (as suggested in ref. 4) with a 2024
vantage year, the magnitude of the surge increase needs to be at least 75%.

Fig. 2 | An example of GMST time series with a
spurious fit. AHadCRUTGMST anomalies (black)
with fitted superimposed discontinuous piecewise
linear trends (red) calculated assuming independent
errors and B scatterplot of the errors to illustrate a
positive correlation. A hypothesis test provides
strong evidence that the independent errors
assumption is not valid with a p-value < 0.000008
(see Supplementary Table 1).
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Fig. 3 | Observed vs predicted GMST anomalies
for 2023. A GMST anomalies from the NASA
(blue), HadCRUT (yellow), NOAA (red), and Ber-
keley (grey) series with superimposed piecewise
linear model (as in Fig. 1a). The fits displayed here
include the autocorrelation. Themodel is fitted until
2022, and used to predict the 2023 data point
(square) for each dataset based on the fitted trend
and autocorrelation. The actual observations for
2023 are also presented (circle). B Zoom in over
2023 with observations (circle) and predictions
(square). The 2023 predictions include 95% pre-
diction intervals (vertical bars). The observed 2023
anomalies are all outside the 95% intervals, indi-
cating a large departure from the expected mean.
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Fig. 4 |Minimummagnitude of a detectable (5% critical level) warming surge (%)
given a range of potential timings for the start of the surge and different timings
for the end of the time series. Surge magnitude estimates are based on the Had-
CRUT global mean surface temperature observed trend, variability and auto-
correlation. Assuming a starting point in 1970, we consider a potential changepoint
in trend for all years between 1990 to 2015 and potential vantage year from 2024 to
2040. The colorbar indicates the minimum magnitude of a surge to be detectable
given the timing of the surge and the vantage year.
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Extending to the vantage year 2040, a surgewouldneed to increaseby at least
39% to be detectable.

To detect a warming surge starting in 2010 and ending in 2024, the
trend needs to have changed by 84% (equivalent to a trend of 0.034 ∘C/year
from2010–2024). If the time series extends to 2030, the surgewould need to
change by at least 58% (amagnitude of 0.028 ∘C/year from2010–2030) to be
detectable. If the time series is further extended to 2040, a surge of at least a
39% change (corresponding to a magnitude of 0.026 ∘C/year from
2010–2040) could be detectable.

We present this simulation based on time series properties of the
HadCRUT data here; however, patterns are the same across all GMST
datasets (Supplementary Notes 3–4; Supplementary Table 2; Supplemen-
tary Figs. 6–8). These estimates include the added uncertainty of an
unknown changepoint location (see Methods). If the timing of a surge was
known a priori from separate observational platforms (e.g., from satellites)
or from climate model simulations, the minimum detectable surge mag-
nitudewould reduce (given the same short-termvariability). In this case, the
changepoint location is known and the problem reduces to testing whether
the trends are the same before and after the hypothesized change
time. Across all datasets, an increase of at least 55% is needed for a warming
surge to be detectable in 2024.

Over thedifferentperiods considered in the literature, thehardest surge
timing todetect is 2015whenobservations end in2024. In this case, there are
only nine years of observations after the change. The trend over those nine
years would need to be 133% larger (0.044 ∘C/year) to become detectable.
BasedonFig. 4, it is harder to detect a surgewhen it occurs close to the series’
end. This behavior is also observed in a simulation study on the detection
power for an increase in warming given different vantage years and surge
timings (Supplementary Figs. 9–10). Detection power is lost with shorter
time series (early vantage years) and for a late surge.

Discussion
GMST series fluctuate in time due to short-term variability, often creating
the appearance of surges and/or slowdowns in warming. While these
fluctuationsmaymimic an increase/decrease in thewarming trend, they can
simply arise from random noise in the series. This is important considering
the warming hiatus discussion over the last decade and the more recent
allegedwarming acceleration. Formal detection of surges and pauses should
account for noise (or short-term variability) and the additional uncertainty
of identifying the changepoint times (unless the timing of a changepoint is
suggested by independent model/theory/observations).

Here, several changepoint models were used to assess whether an
acceleration in warming has occurred since 1970. Different changepoint
model types were considered to assess sensitivity to model choice. After
accounting for short-term variability in the GMST (characterized by an
autoregressive process), a warming surge could not be reliably detected
anytime after 1970. This holds regardless of whether the changepoint
models impose continuity of mean responses between regimes or auto-
correlation is fixed or time-varying. We further demonstrate that an
acceleration is detected with a discontinuous model that assumes inde-
pendent errors, which is not a statistically valid model choice. Model fits
should be assessed for overall goodness of fit and produce residuals with a
zero-mean and no autocorrelation (white noise). In the Supplementary
Information, this is done by analyzing residuals from the model fits and
testing them for residual autocorrelation.

While our focus is onwhether therehasbeen a continuedacceleration in
the rate of global warming, our analysis recognizes how unusual surface
temperature anomalies were in 202336–38. Our model fit (in the continuous
mean responsemodel with changing autocorrelation, Fig. 1a) shows that the
2023 anomaly is larger than the 99th percentile of the expected mean, indi-
cating a large departure from the current warming trend.One could consider
including exogenous variables (such as ENSO) in the model, which would
reduce variability in the residuals and enable statistically detection of any
changes sooner39. The fact that trend changes in GMST records were not
detected after the 1970s does not rule out that some small changes may have

occurred; indeed, the recordsmay be too short (or changes not large enough)
to be detectable amidst the short-term variability. As such, a simulation study
was conducted to assess when a warming surge will become detectable in the
future. A change in the warming rate on the order of 35% around 2010
becomes detectable circa 2035. This is the case for both an acceleration or a
slowdown in warming. Our simulations allow for either an increase or
decrease in the trend (two-sided Student’s test). Detection lengths would
reduce with one-sided testing (say warming only), but this is not deemed
justifiable given the recent discussion about a pause. Indeed, testing for a
warming increase because the sameobservations suggest an increasewill tend
to overstate significance. Finally, our conclusion that an acceleration is not
detectable at the global level yetmaynot applyat regional levels anda rigorous
detection of regional warming surges should be the focus of future work.

Our conclusions are based on piecewise linear models. While piecewise
linear models provide a good first-order approximation of any nonlinearities
and prevent overfitting the data, nomodel will perfectly describe our scenario.
The assumption that global surface temperatures contain first-order auto-
correlation, which describes the dependency in the year-to-year noise values, is
short-memory and geometrically decays in year.Other types ofmodels used to
describe the noise in surface temperature observations include a long-memory
model (where thedecay is a power law)40–42.However,wedonot consider these
models here as identifying long-memory requires long time series and its
presence tends tobemoreprominent in sea surface temperatures43,44. Stochastic
trend models where the GMST trend cointegrates with the trend in radiative
forcings have also been considered45–47. That said, these models have been
mainly used for detection and attribution studies, and we focus on detecting a
change in the warming trend here.

Method
Data
The following four GMST time series were analyzed in this study:
• The Hadley Centre/Climatic Research Unit, Version 5 (HadCRUT),

surface temperature26. This series is available at https://www.metoffice.
gov.uk/hadobs/hadcrut5/data/current/download.html. The annual
anomalies from 1850-2023 were used. Anomalies are relative to the
1961–1990 period.

• The Merged Land-Ocean Surface Temperature Analysis from the
National Oceanic and Atmospheric Administration (NOAAGlobal-
Temp v5.1.0.) of 28. This series is available at https://www.ncei.noaa.
gov/access/monitoring/climate-at-a-glance/global/time-series/globe/
land_ocean/1/9/1850-2023. The annual anomalies from 1850–2023
were used. Anomalies are with respect to the 1901–2000 period.

• TheBerkeleyEarthSurfaceTemperatures (Berkeley)of ref. 25.This series
is available at http://berkeleyearth.org/data. Anomalies are computed
from the 1961–1990 baseline and cover the period 1850–2023.

• The Goddard Institute for Space Studies (GISS) Surface Temperature
Analysis (GISTEMP)at theNationalAeronautic SpaceAdministration
(NASA)27. This series is available at https://data.giss.nasa.gov/gistemp/
and spans 1880-2023. Anomalies are scaled to the 1951–1980 period.

Changepoint models
Ourwork entailsfitting several changepoint time seriesmodels that partition
the GMST into regimes with similar trends using piecewise linear regression
models. This work ismost concernedwith changes in the trend of the series.

Changepoint analyses partition the data into different segments at the
changepoint times. To describe thismathematically, ourmodel allows form
changepoints during the data record t∈ {1,…,N}, which occur at the times
τ1,…, τm, where theordering0= τ0< τ1 < τ2<⋯< τm<N= τm+1 is imposed.
The time t segment index r(t) takes the value of unity for t∈ {1,…, τ1}, two
for t∈ {τ1+ 1,…, τ2},… , andm+ 1 for t∈ {τm+ 1,…,N}. Hence, them
changepoint times partition the series into m + 1 distinct segments. The
model for the whole series is

Xt ¼ E½Xt � þ ϵt ;
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where E[Xt] is the regression function. The regression functions considered
in this manuscript include a continuous (joinpin) model, where we impose
process means to meet at the changepoint times, and its discontinuous
counterpart. The model errors {ϵt} all have a zero mean and allow for
autocorrelation; more about this component is said below.

The trend model regression structure we use has the simple piecewise
linear form

E½Xt� ¼ αrðtÞ þ βrðtÞt;

where βr(t) and αr(t) are the trend slope and intercept, respectively, of the
linear regression in force during regime r(t). An equivalent representation is

E½Xt � ¼

α1 þ β1t; 0 ¼ τ0< t ≤ τ1;

α2 þ β2t; τ1 < t ≤ τ2;

..

. ..
.

αmþ1 þ βmþ1t; τm < t ≤ τmþ1 ¼ N:

8
>>>><

>>>>:

ð1Þ

If continuity of the regression response E[Xt] is imposed at the changepoint
times, the restrictions

αi þ βiτi ¼ αiþ1 þ βiþ1τi; 1≤ i≤m;

are imposed.These restrictions result in amodel havingm changepoints and
m + 2 free regression parameters. Writing the model in terms of the free
parameters α1, β1,…, βm+1 only gives

Xt ¼ α1 þ
XrðtÞ�1

i¼1

ðβi � βiþ1Þτi þ βrðtÞt þ ϵt:

The model errors fϵtgNt¼1 are a zero mean autocorrelated time series. For a
first-order autoregression (AR(1)), such a process obeys the difference
equation

ϵt ¼ ϕϵt�1 þ Zt ; ð2Þ

where {Zt} is independent and identically distributed Gaussian noise with
mean E[Zt] ≡ 0 and variability Var[Zt] ≡ σ2, and ϕ ∈ ( − 1, 1) is an
autocorrelationparameter representing the correlationbetween consecutive
errors. It is important to allow for autocorrelation in the model errors in
climate changepoint analyses11,34,48,49: failure to account for autocorrelation
can lead one to conclude that the estimated number of changepoints, m̂, is
larger than it should be. Higher-order autoregressions are easily
accommodated should a first-order scheme be deemed insufficient. We
will also consider cases where the autoregressive parameter changes at each
changepoint time; these essentially let ϕ depend on time t via the regime
index r(t). The changepoint times for the autocorrelation and mean
structure are constrained to be the same.

Estimation of the model parameters proceeds as follows. For a given
number of changepoints m and their occurrence times τ1, …, τm, one first
computesmaximumlikelihoodestimatorsof the regressionparameters.These
producemaximum likelihood estimators of allαi and βi. This fit gives amodel
likelihood, which we base on the Gaussian distribution since the series are
globally and annually averaged. This likelihood is denoted by L(m: τ1,…, τm).

The hardest part of the estimation scheme lies with estimating the
changepoint configuration.This is done via aGaussian penalized likelihood.
In particular, the penalized likelihood objective function O of form

Oðm; τ1; . . . ; τmÞ ¼ �2 lnðLðm; τ1; . . . ; τmÞÞ þ Cðm; τ1; . . . ; τmÞ

is minimized over all possible changepoint configurations. The penalty
C(m; τ1,…, τm) is a charge for havingm changepoints at the times τ1,…, τm
in a model. As the number of changepoints in the model increases, the

modelfit becomesbetter and�2 lnðLÞ correspondinglydecreases.However,
eventually, adding additional changepoints to the model does little to
improve its fit. The positive penalty term counteracts “overfitting” the
number of changepoints, balancing likelihood improvementswith a cost for
having an excessive number of model parameters (changepoints and linear
parameters within each segment). Many penalty types have been proposed
to date in the statistics literature49. One that works well in changepoint
problems is the Bayesian Information Criterion (BIC) penalty

Cðm; τ1; . . . ; τmÞ ¼ p lnðNÞ;

where p is the total number of free parameters in the model. Table 2 lists
values of p for the various model types encountered in this paper. For
example, for a continuous model with a global AR(1) structure, there are
2m + 4 free regression parameters in a changepoint configuration with m
changepoints and m + 1 segment parameters. Also contributing to the
parameter total are ϕ and σ2.

Finding the best m and τ1,…, τm can be accomplished via a dynamic
programming algorithm called PELT50 or a genetic algorithm search as in
refs. 51,52. PELT is computationally rapid, performs an exact optimization
of the penalized likelihood, and was used here.

Given a specified model with trend and autocorrelation structure, a
prediction interval can be computed for the last regime. Assuming that the
forecast errors are normal, a 95% prediction interval for a h-step ahead
forecast is given by

X̂tþh ± 1:96σ̂h ð3Þ

where h represents the number of years ahead, X̂tþh is the predicted tem-
perature anomaly and σ̂h is an estimate of the standard deviation of the
h-step forecast distribution.Theprediction intervals are computedusing the
model fit from the final segment in each series.

Testing trend differences
How can one determine the statistical significance of a potential surge in the
warming rate at some point since 1970? To address this question, amodel is
needed. Whilst our running example here considers the HadCRUT series
since 1970, other GMST datasets are easily analyzed (see Supplementary
Material).

A simplification of (1) for a single continuous changepoint is

E½Xt� ¼
α1 þ β1t; 0 < t ≤ τ;

α1 þ β1τ þ β2ðt � τÞ; τ < t ≤N:

�

ð4Þ

There are other good single changepoint slope change techniques for this
task— two are HAC tests of ref. 53 and the two phase regressionmodels of
ref. 54 (the latter would have to be modified for autocorrelation). We
develop a simple procedure here that is very accessible.

If the single changepoint is known to occur at time τ, then the Student’s
test based statistic

Tτ ¼
β̂2 � β̂1

dVar β̂2 � β̂1

� �1
2

ð5Þ

can be used to make inferences. Here, β̂1 and β̂2 are the estimated trends of
the two segments before and after time τ. One concludes a surge inwarming
if Tτ is too large to be explained by chance variation (as gauged by a Student

Table 2 | Model penalties for fitting in trend models

Continuous Discontinuous

Global ϕ p = 2m + 4 p = 3m + 4

Piecewise ϕ p = 4m + 4 p = 5m + 4
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distribution withN− 3 degrees of freedom); a change in the warming rate
(negative or positive) is suggested when ∣Tτ∣ is too large to be explained by
chance variation. In computing Varðβ̂2 � β̂1Þ, the AR(1) parameters ϕ and
σ2 are needed. Estimates of the two slopes, AR(1) parameters and their
standard deviations are provided in time series fitting software (such as the
arima function in R55).

Extreme care is needed when τ is unknown. Should the time τ be
selected visually among the many possibilities where it can occur without
accounting for this, statistical mistakes can ensue. This is why changepoint
techniques are needed. For example, τ = 43, which corresponds to 2012, has
been suggested as a time when warming accelerated4. For the 1970–2023
data, ignoring the selection of the changepoint, at the 0.05 significance level,
a ∣Tτ∣ of 2.007 or more indicates warming rate changes; a two-tailed Stu-
dent’s test was employed to allow for either an increase or a decrease in the
warming rate. For our specific example, jT43j ¼ jβ1970;20121 �
β2013;20232 j=σ̂ ¼ j0:0286� 0:0187j=0:0065 ¼ 1:5281 is not statistically
significant at the 0.05 significance level.

If the time of the warming rate change is unknown (as is common),
statistical significance isdeterminedbasedon thenullhypothesisdistributionof

Tmax ¼ max
‘≤ τ ≤ u

jTτ j; ð6Þ

where ℓ and u are values that truncate the admissible changepoint times near
the data boundaries for numerical stability. TheTmax statistic has significantly
different statisticalproperties (more tail area) than ∣Tτ∣ for afixedτ.Acommon
truncation requirement, andone thatwe follow, is to truncate 10%at the series
boundaries: ℓ= 0.1N and u= 0.9N. If the calculated Tmax statistic exceeds the
thresholdQN, whereQN is the 0.95 quantile of the null hypothesis distribution
of Tmax, then a statistically significant rate change is declared with confidence
95%. The most likely changepoint time, τ̂, is estimated as the τ at which
jTτ j ¼ Tmax ismaximal. Statistical tests of this typearediscussed in ref. 56and
ref. 57. There, large sample distributions are derived to determine QN. How-
ever, due to the relatively short series since1970,weuseaMonteCarlomethod
with Gaussian AR(1) errors to determine statistical significance.

Elaborating, our Monte Carlo approach simulates many series using
parameter estimates from the current data under the null hypothesis. For
example, with the 1970–2023 HadCRUT data, the null hypothesis para-
meters are estimated as α̂1970�2023

1 ¼ �0:17, β̂
1970;2023

1 ¼ 0:0199, β̂2 ¼ 0
(there is no second segment under the null hypothesis), ϕ̂ ¼ 0:0865, and
σ̂ ¼ 0:097 (Table 3). One hundred thousand time series were then simu-
lated, Tmax was computed for each series, and the 0.95 quantile of these
values was identified to estimate QN.

The simulated 95th percent quantile for the HadCRUT series is
QN = 3.1082. The largest ∣Tτ∣ statistic occurs in 2012 and is
jT43j ¼ 1:5281ð¼ TmaxÞ, which is far fromthe required thresholdof 3.1082.
Hence, there is little evidence for a statistically significant change in the
warming rate from 1970–2023 in the annual HadCRUT series; this con-
clusion holds for all GMST datasets considered in this paper.

So how large would the slope need to be in the second segment to
declare a significant surge? We answer this for a baseline segment of
1970–2012 and a second segment from 2013–2023. To answer this, note
that β̂1 and the numerator of Tτ do not depend on β̂2; thus, we can set
Tmax ¼ T43 ¼ 3:1082 ¼ QN and solve for β̂2. This results in β̂2 ¼ 0:0388.
We see that a change in surge magnitude of 100(0.0388–0.0187)/0.0187 =
107% between the two segments is required for 95% statistical confidence.

The same logic can be used to determine future estimated rates
necessary for statistical significance. Using theHadCRUT series up to 2023,
there is no statistical evidence of a surge starting in 2012 relative to the
1970–2012 segment.Will this still be the case in 2025?How about 2040? For
any potential surge starting in 1990-2015, the data from1970-2023was used
to estimate the warming trend slope, intercept, and AR(1) structure. We
then simulated cutoff quantiles for 95% statistical significance as above for
several considered vantage years, pushing out to 2040. Since the estimated
standard deviation of the slope differences depends only on the segment
lengths and the AR(1) parameters, the above procedure can be solved as
above for the minimal slope necessary to induce statistical significance.

Using the HadCRUT series, one hundred thousand Gaussian series
were simulated up to 2040 under our best working model (no surge,
β1970;20231 ¼ 0:0199, α=− 0.17, ϕ= 0.0865, and σ= 0.097). This gives the
Monte Carlo quantile estimate Q71 = 2.9877. The numerator of the
Tτ-statistic corresponding to a change starting in 2012 is estimated and solved

for the minimally significant slope for the 2013–2040 segment: β̂
1970;2012

1 þ
dVarðβ̂2013;20232 � β̂

1970;2012

1 Þ
1=2

Q71 ¼ 0:0187þ ð2:9877Þ 0:0025 ¼ 0:0262.
In short, a 40% increase in the 2013–2040 warming rate relative to the
1970–2012 ratewill be needed todeclare a significantwarming surge by 2040.

The above process was repeated for each surge year, from
1990–2015, and each vantage year from 2024–2040. For each surge year
start τ, the minimum statistically significant slope is calculated assuming
that Tmax ¼ jTτ j. For each τ, this minimally significant slope is com-
pared to the estimated slope from the 1970-(1969+τ) series segment to
calculate its associated percent change. The results for the HadCRUT
series are displayed in Fig. 4. Overall, one sees that either significantly
increased warming or many more years of observations will be required
before declaring any warming surge with a reasonable degree of con-
fidence. This process is repeated for other GMST datasets based on the
null hypothesis parameters listed in Table 3. Results are presented in
the Supplementary Information.

Data availability
All the datasets used here are publicly available. Global mean surface tem-
perature anomalies from the Hadley Centre/Climatic research Unit are
available at https://www.metoffice.gov.uk/hadobs/hadcrut5/data/current/
download.html. The Merged Land-Ocean Surface Temperature Analysis
from the National Oceanic and Atmospheric Administration (NOAAGlo-
balTempv5.1.0.) is available at https://www.ncei.noaa.gov/access/monitoring/
climate-at-a-glance/global/time-series/globe/land_ocean/1/9/1850-2023. The
Berkeley Earth Surface Temperatures time series is available at http://
berkeleyearth.org/data. The Goddard Institute for Space Studies (GISS) Sur-
face Temperature Analysis (GISTEMP) at the National Aeronautic Space
Administration (NASA) is available at https://data.giss.nasa.gov/gistemp/.

Code availability
Codes are available at https://doi.org/10.5281/zenodo.13340187.
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