
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/369063874

The soil CO2-lake is a key for understanding global climate change

Preprint · March 2023 DOI: 10.13140/RG.2.2.30020.30080

Some of the authors of this publication are also working on these related projects:

 Project
 nematodes View project

 Project
 Soil Biodiversity and Ecosystem Processes View project

1 The soil CO₂-lake is a key for understanding global climate change

2 Weixin Zhang¹, Yuanhu Shao¹, Xiaoming Zou², Shenglei Fu^{1*}

³ Key Laboratory of Geospatial Technology for Middle and Lower Yellow River

- 4 Regions, Ministry of Education; College of Geography and Environmental Science,
- 5 Henan University, Kaifeng, Henan 475004
- ⁶ ²Department of Environmental Sciences, University of Puerto Rico, San Juan, Puerto
- 7 Rico

8 Abstract:

- 9 In addition to the widely recognized increase in atmospheric CO_2 concentration, are
- 10 there other factors that will have an important impact on global warming? In this
- study, a concept of "soil CO₂-lake" was introduced, and the pivotal roles of soil CO₂-
- 12 lake in carbon cycling and related climate changes were illustrated. We demonstrated
- that the soil CO₂-lake can link the aboveground and underground carbon processes,
- 14 the organic-inorganic carbon conversion, and the carbon transfer between terrestrial
- and aquatic system, as well as directly change soil heat balance. The coupling of "soil
- 16 CO₂-H₂O-mineral matter (MM)" may provide a new dimension for understanding the
- 17 mechanism of global warming. While, the effects of soil CO₂-related processes on
- 18 global climate changes may be concealed by that of atmospheric CO₂. The
- 19 relationship between soil CO₂-lake dynamics and the major carbon cycle processes
- since the industrial revolution needs to be explored, and field manipulation
- experiments and monitoring platforms may be useful to determine the connections
- between soil CO₂-lake and climate changes during vegetation degradation and
- restoration. Although direct evidence of soil CO₂-lake in regulating global climate
- change is still to be obtained, we proposed to incorporate soil CO_2 -lake into the global
- change model which may be helpful to comprehensively understand the carbon cycle
- 26 and related climate changes.
- **Keywords**: CO₂-lake, soil CO₂-H₂O coupling, soil heat balance, greenhouse effect.
- 28
- 29 The rise of atmospheric CO_2 is considered as the main driving force of global
- 30 warming since the industrial revolution (Anderson et al., 2016). Much attention has
- also been paid to soil CO_2 since it may increase CO_2 emission into the atmosphere
- 32 (Lei et al., 2021). It was found that soil and soil CO_2 can regulate the surface heat
- balance by enhancing heat retention (Zhang et al., 2020). We considered that soil CO_2
- 34 may potentially play a pivotal role in terrestrial carbon cycle. Paying attention to both
- the atmospheric CO_2 and soil CO_2 can not only reflect the heat absorption in the
- 36 atmosphere, but also reflect the heat retention within soil, which is of great

- significance to comprehensively understand the carbon cycle and related climatechanges.
- In this study, we estimated the standing amount of soil CO_2 pool and its turnover rate
- 40 in terrestrial lands. Then, a concept of "soil CO₂-lake" was introduced, and the pivot
- roles of soil CO₂-lake in carbon cycling and related climate changes were illustrated.
- 42 Finally, how the "soil CO₂-lake" conception could contribute to global change studies
- 43 was discussed.

44 **1. The characteristics of soil CO2 pool**

- 45 Given that soil CO_2 concentration was usually in range of 0-50,000 ppm (Hashimoto
- et al., 2007) and responsive to temperate and precipitation (Ray et al., 2020; Lei et al.,
- 47 2021), the soil CO_2 pool looks like a variable lake of CO_2 , which turnover rapidly
- 48 with large flow of input and output. The estimated standing amount of soil CO_2 -lake
- in global terrestrial soil profile (1m deep), with average CO₂ concentration of 20,000
- ppm, was 0.01 Pg C and 0.0054 Pg C when 50% and 25% of soil porosity was
- 51 assumed, respectively (Fig.1a).
- In addition, the soil CO_2 -lake seemed active and changeable. As for the same 1 m soil
- profile with average CO_2 concentration of 20,000 ppm, if the total soil CO_2 emission
- of 1000 g C m⁻² year⁻¹ was observed, the estimated turnover rate of soil CO₂ was 0.9
- times hour⁻¹ and 1.9 times hour⁻¹ when 50% and 25% of soil porosity was assumed,
- 56 respectively (Fig. 1b).
- 57

58 2. The pivot roles of soil CO₂-lake in carbon cycling and related climate changes

- 59 It is well known that soil CO_2 -lake could be a major driver of aboveground carbon
- 60 cycling. There was around 98 Pg C year⁻¹ of CO₂ emission from soil into atmosphere
- 61 (Bond-Lamberty and Thomson, 2010; Lei et al., 2021). The emitted soil CO₂ may
- 62 significantly influence vegetation photosynthesis when it was quickly re-fixed by
- understory plants (Brooks et al., 1997) or exert an effect of CO₂ fertilization (Huang
- et al., 2018). Then the soil CO₂ remaining in the atmosphere was supposed to make
- 65 the greenhouse effect stronger.
- 66 However, the influences of soil CO₂-lake on belowground carbon cycling were not
- 67 fully illustrated. Soil CO₂-lake could be closely related with other major carbon
- processes as well as directly change soil heat balance (Fig. 3). The soil CO_2 -lake
- 69 made a bridge between organic matter decomposition, inorganic matter weathering,
- and soil heat balance. On the one hand, soil CO_2 -lake links organic realm to inorganic
- realm. Soil CO₂ may accumulate with the mineralization of litter and root-derived
- carbon during autotrophic (Ra) and heterotrophic respiration (Rh). The activities of
- soil fauna and/or microbiota enhance soil CO₂ production and then accelerate both the

chemical weathering (Regnier et al., 2013; Yan et al., 2014; Deng et al., 2022) and 74 biogenic calcification (Briones et al., 2008). As a result, organic carbon was converted 75 into inorganic carbon and transferred to aquatic system, which further regulated 76 global carbon cycle by forging nexus between the continents, ocean and atmosphere. 77 (Regnier et al., 2013; Battin et al., 2023). On the other hand, soil CO₂-lake could 78 79 directly change soil heat balance. Soil CO₂, especially when its concentration reached around 7500 ppm, has been found to increase soil air temperature significantly and 80 potentially contribute to the greenhouse effect (Zhang et al., 2020). Furthermore, such 81 a non-severe increase of soil temperature will stimulate belowground biological 82 activities (Wang et al., 2021) and enhancing silicate weathering (Deng et al., 2022). 83 Finally, the activities of soil biota and root may improve soil aggregate structure with 84 greater soil porosity (Lehmann et al., 2017), and, thus, increase soil water retention 85 capacity and the volume of soil air. The soil aggregate and associated porosity 86 function as 'biogeochemical reactors' (Battin et al., 2023) where organic matter, O₂, 87 CO₂, H₂O and mineral-matter (MM) interact and coupling. As a result, both the size 88 of soil CO₂-lake and the amount of inorganic carbon that transfers into aquatic system 89 may be increased. 90

91 **3.** What could be added to global change studies by focusing on soil CO₂-lake?

92 Paying more attention on the soil CO₂ pool would be helpful in getting a full map of

93 the mechanism for understanding of global change. Firstly, a holistic view of global

carbon cycling could be obtained because the above- and belowground systems of

terrestrial lands, as well as the terrestrial and aquatic systems, were fully connected

96 through the soil CO_2 -lake.

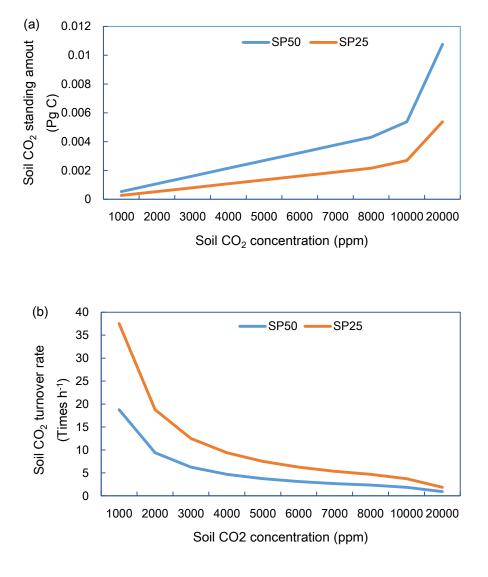
- 97 Secondly, the unstable and changing soil CO₂-lake may appear to be a huge
- 98 uncertainty, but in fact it may provide a new dimension for explaining global climate
- 99 change. In comparison to atmospheric CO₂, the spatial-temporal heterogeneity of soil
- 100 CO_2 was much greater. Only when the relatively uniform atmospheric CO_2 is
- 101 combined with the heterogeneous hydrothermal conditions can the climate and
- 102 environmental changes in different regions of the earth be fully explained. The
- 103 coupling of soil CO_2 -H₂O-MM, together with the coupling of CO_2 -H₂O in atmosphere
- 104 (Held and Soden, 2000), is an important potential driving force of surface
- hydrothermal conditions, so it is necessary to combine the two (i.e., atmospheric CO_2
- and soil CO_2) to interpret the CO_2 -mediated global changes.
- 107 Thirdly, there is a possibility that the change of soil CO_2 and its related processes is
- the other main driving force of global warming since the industrial revolution, rather
- than the generally recognized increase of atmospheric CO₂ concentration. When the
- atmospheric CO_2 concentration was increased with industrial revolution, the intense
- 111 land use change such as deforestation occurred simultaneously, and may alter soil
- 112 CO₂-lake. Hence, the effects of soil CO₂-related processes on global climate changes
- 113 might be concealed by that of atmospheric CO₂.

Finally, there are large opportunities for human being in regulating soil CO₂-lake and 114 its ecological functions. Human activities such as afforestation, ecosystem restoration, 115 no-tillage farming, and sponge-city construction may improve the formation of 116 natural soil aggregate structure. The coupling of CO₂-H₂O-MM within soil may 117 maintain a more stable and livable ecosystem. The well-developed vegetation and 118 119 soil, with better soil aggregate structure and greater porosity, may facilitate the coupling of CO₂-H₂O-MM within soil. Thus, the protection of natural vegetation and 120 soil is not only conducive to the protection of biodiversity (Newbold et al., 2016; 121 Luby et al., 2022), but also crucial to alleviating global warming and maintaining the 122 livable environment of the earth. The natural climate solutions (NCS), the strategies 123 for increasing carbon storage (Lu et al., 2022), would also contribute more to climate 124 change mitigation. 125

126 **4. Conclusion remarks**

Overall, soil CO₂-lake is likely to link the biological components (photosynthesis and
organic matter decomposition), physical processes (heat exchange within soil and
between soil and surface atmosphere) and chemical processes (carbonate and silicate
weathering) together, which may provide a new dimension for understanding the
mechanism and uncertainties of global climate change.

- 132Although direct evidence of soil CO2-lake in regulating global climate change is still
- to be obtained, it is timely to incorporate soil CO₂-lake into the global change model.
- 134 We need firstly to find a way to estimate the change pattern of soil CO₂-lake since the
- industrial revolution. In addition, field manipulation experiments and monitoring
- platforms should be established to quantify the relationship between soil CO_2 -lake
- dynamics and the key carbon cycle processes, and evaluate the impacts of soil CO₂-
- lake on the climate and environmental changes in ecosystems at different stages ofvegetation degradation or restoration.


140 Acknowledgments:

We thank Dr. David Coleman for helpful comments on the early version of themanuscript.

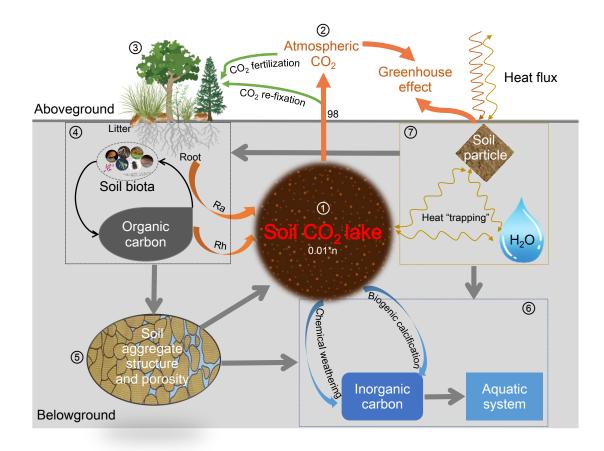
143 **References:**

- Anderson, T., Hawkins, E. & Jones, P. CO₂ the greenhouse effect and global warming:
 from the pioneering work of Arrhenius and Callendar to today's Earth System
 Models. Endeavour, 2016, 40(3), 178–187.
- Battin, T.J., Lauerwald, R., Bernhardt, E.S. et al. River ecosystem metabolism and
 carbon biogeochemistry in a changing world. Nature 613, 449-459 (2023).
- Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil
 respiration record. Nature 464, 579–582 (2010).

151 152 153	Briones MJI, Ostle NJ, Piearce TG. Stable isotopes reveal that the calciferous gland of earthworms is a CO2-fixing organ. Soil Biology and Biochemistry, 2008, 40(2): 554-557.
155	Brooks JR, Flanagan LB, Varney GT, Ehleringer JR. Vertical gradients in
155	photosynthetic gas exchange characteristics and refixation of respired CO_2
156	within boreal forest canopies. Tree Physiol. 1997, 17(1):1-12.
150	Deng, K., Yang, S. & Guo, Y. A global temperature control of silicate weathering
158	intensity. Nat Commun 13, 1781 (2022).
158	Hashimoto, S., Tanaka, N., Kume, T. et al. Seasonality of vertically partitioned soil
160	CO ₂ production in temperate and tropical forest. J For Res 12, 209–221 (2007).
161	Held IM, Soden BJ. Water Vapor Feedback and Global Warming. Annual Review of
162	Energy and the Environment 2000 25:1, 441-475.
162	Houghton, R. A. and Nassikas, A. A.: Global and regional fluxes of carbon from land
164	use and land cover change 1850-2015, Global Biogeochemical Cycles, 31, 456-
165	472, 2017.
165	Huang, K., Xia, J., Wang, Y. et al. Enhanced peak growth of global vegetation and its
167	key mechanisms. Nat Ecol Evol 2, 1897–1905 (2018).
168	Lehmann A, Zheng W, Rillig MC. Soil biota contributions to soil aggregation. Nat
169	Ecol Evol. 2017, 1(12):1828-1835.
170	Lei, J., Guo, X., Zeng, Y. et al. Temporal changes in global soil respiration since
171	1987. Nat Commun 12, 403 (2021).
172	Lu, N., Tian, H., Fu, B. et al. Biophysical and economic constraints on China's
173	natural climate solutions. Nat. Clim. Chang. 12, 847–853 (2022).
174	Luby, I.H., Miller, S.J. & Polasky, S. When and where to protect forests. Nature 609,
175	89–93 (2022).
176	Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SL,
177	Hoskins AJ, Lysenko I, Phillips HR, Burton VJ, Chng CW, Emerson S, Gao D,
178	Pask-Hale G, Hutton J, Jung M, Sanchez-Ortiz K, Simmons BI, Whitmee S,
179	Zhang H, Scharlemann JP, Purvis A. Has land use pushed terrestrial biodiversity
180	beyond the planetary boundary? A global assessment. Science. 2016,
181	353(6296):288-291.
182	Ray, R.L., Griffin, R.W., Fares, A. et al. Soil CO2 emission in response to organic
183	amendments, temperature, and rainfall. Sci Rep 10, 5849 (2020).
184	Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean.
185	Nat. Geosci. 6, 597–607 (2013).
186	Wang, C., Morrissey, E.M., Mau, R.L. et al. The temperature sensitivity of soil:
187	microbial biodiversity, growth, and carbon mineralization. ISME J 15, 2738–
188	2747 (2021).
189	Yan JH, Wang WT, Zhou GY, Li K, Wang SJ. Responses of water yield and
190	dissolved inorganic carbon export to forest recovery in the Houzhai karst basin,
191	southwest China. Hydrological Processes, 2014, 28(4): 2082-2090.
192	Zhang, W., Yu, C., Shen, Z. et al. An ignored key link in greenhouse effect: Soil and
193	soil CO_2 slow heat loss. Soil Ecol. Lett. 2, 308-316 (2020).

196 Figure 1. The estimated global amount of standing soil CO₂ (Pg C) (a) and

turnover rate (times hour⁻¹) (b) in the 0-1 m soil profile. SP50 and SP25 refers to
 50% and 25% of soil porosity was assumed, respectively. Data of areas in different


50% and 25% of soil porosity was assumed, respectively. Data of areas in different
types of land cover was from literature (Houghton and Nassikas, 2017), but to obtain

a conservative estimation, only areas of global forest, cropland and pasture were

- included. When estimating soil CO_2 turnover rate, an annual soil CO_2 emission of
- 1000 g C m^{-2} was assumed which was approximately the average soil respiration in
- subtropical and temperate regions during 1987-2016 (Lei et al., 2021), and all soil
- 204 CO₂ produced in soil was considered to emit into atmosphere without any obstacles.

205

206

208

209 Figure 2. The soil CO_2 pool and its connections with major carbon processes and greenhouse effect. ①Soil CO₂-lake, which was estimated as 0.01*n Pg C year⁻¹, **n** 210 refers to the turnover times per year; ②Atmospheric CO₂ pool; ③CO₂ fixation by 211 vegetation; ④Soil food webs-regulated carbon decomposition and transformation; ⑤ 212 Soil porosity characteristics; ⁽⁶⁾Inorganic carbon pool; ⁽⁷⁾Heat balance regulated by 213 the interaction between soil CO₂ and soil particles. Ra and Rh refers to autotrophic 214 respiration and heterotrophic respiration, respectively. The unit of carbon pool is Pg C 215 year⁻¹. 216