
1.  Introduction
Human activity affects the global carbon cycle both directly (e.g., through land use change) and indirectly 
(primarily through changes in climate caused by greenhouse gas emissions). The resulting changes in climate 
affect the rate at which ecosystems grow and decompose. Increased atmospheric CO2 concentrations associated 
with emissions also directly stimulate photosynthesis through so-called CO2 fertilization (Walker et al., 2020). 
Taken together, CO2 fertilization and climate change affect the net land carbon sink, which is the balance 
of photosynthesis (gross primary productivity, GPP), respiration, and disturbance fluxes (e.g., fire, land use 
change). This land sink in turn affects the amount of CO2 remaining in the atmosphere and thus the magnitude 
of associated future climate change. That is, a strong set of interacting feedbacks exists between climate, CO2 
concentrations, and the carbon cycle (Friedlingstein & Prentice, 2010). However, the magnitude of these feed-
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matter (heterotrophic respiration). The resulting change in carbon flux—and its spatial distribution—that 
can be attributed to increasing CO2 and climate change remains unknown. We used the Carbon Data Model 
Framework, a model-data fusion system that assimilates global observations from satellites and other sources to 
create an ensemble of observationally constrained carbon cycle representations, to determine the photosynthesis 
and respiration fluxes that can be attributed to increased atmospheric CO2 and associated climate change from 
1920 to 2015. Across the globe, the response of photosynthesis and respiration to atmospheric CO2 dominates 
their response to climate alone. The regional distribution of the carbon sink attributable to climate change and 
CO2 is strongly influenced by the 'loss ratio of carbon gained'—the fraction of enhanced photosynthesis that 
is lost to respiration. While the wet tropics' attributable photosynthesis flux is 1.4 times larger than that of the 
temperate region, the attributable flux of net carbon uptake is actually 1.25 larger in the temperate region, due 
to the wet tropics' greater heterotrophic respiration response to enhanced plant growth. At the global scale, the 
loss ratio of carbon gained is 83 ± 0.6%. Our results highlight the importance of the respiration responses to 
enhanced plant growth in regulating the land carbon sink.

Plain Language Summary  Earth's land areas have taken up a large amount of carbon from the 
atmosphere over the last century. However, exactly where, why, and by how much carbon uptake has increased 
is uncertain. We used a modeling system informed by global observations from satellites and elsewhere to 
quantify how the flows of carbon changed in response to the last century of increasing atmospheric CO2. We 
found that increased photosynthesis stimulates greater ecosystem respiration, decreasing CO2's effect on net 
land carbon uptake. The fraction of increased photosynthesis that goes to respiration (rather than land carbon 
storage) varies by region and determines the location of the largest net land carbon uptake. Although it acts 
indirectly through changes in plant and soil carbon stocks, the respiration response to CO2 is a dominant 
component of the land carbon cycle response to human-caused emissions of CO2 and associated climate change.
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backs is uncertain, contributing to the large spread in predicted atmospheric CO2 concentrations by 2100 for a 
given emission scenario (Friedlingstein et al., 2014; Lovenduski & Bonan, 2017). A necessary starting point for 
constraining this uncertainty is understanding how climate change and CO2 fertilization have each changed the 
historical carbon uptake.

Previous studies attributing historical changes in GPP have found that the effect of CO2 fertilization dominates 
other processes such as climate change or land use change over the last century (Melnikova & Sasai, 2020; Piao 
et al., 2013; Schwalm et al., 2020). Accordingly, the effect of CO2 fertilization on GPP, including its magnitude 
and spatial distribution, has been intensively studied, although the roles of tropical ecosystems, stand age, and 
nutrient limitations remain controversial (Chi et al., 2022; Ellsworth et al., 2017; Norby & Zak, 2011). How 
much the historical net terrestrial carbon uptake increased in response to the past rise in atmospheric CO2 (or past 
climate change) is not just dependent on GPP but also depends on the response of respiration. Although there is 
little to no direct effect of atmospheric CO2 concentrations on respiration rates, there is potential for an indirect 
effect (Kuzyakov et al., 2019): first, increased GPP due to CO2 fertilization leads to increased plant growth, and 
then the eventual decomposition of that increased plant matter increases litter and soil organic matter pools, thus 
enhancing heterotrophic respiration (Rh). That is, CO2 used for photosynthesis has two possible fates: (a) being 
respired back to the atmosphere, or (b) being stored in the ecosystem's soil and carbon pools.

To understand carbon-climate feedbacks, we must understand how any enhanced carbon uptake is partitioned 
between respiration to the atmosphere and storage in the ecosystem. A single metric captures this partitioning: 
the proportion of enhanced GPP lost to respiration, instead of being stored in the ecosystem (hereafter, referred 
to as “the loss ratio of carbon gained”). At a single mature forest site in Australia, Jiang et al. (2020) found a loss 
ratio value of 87%. It is unclear how this ratio varies across the globe, and if it has been as large across the history 
of anthropogenic CO2 enhancement as it was in the Jiang et al. (2020) study. It is also unclear how historical 
changes in respiration (and, relatedly GPP) in response to CO2 enhancement have changed in the presence of 
climate change.

At global scales and over century-scale time periods, land surface models are one of the only tools for understand-
ing how complex changes in climate and CO2 fertilization affect the carbon balance of the terrestrial ecosystem. 
Yet, several factors limit the utility of widely used land surface model ensembles. First, in the absence of any 
information about the magnitude and distribution of carbon pools in the distant past, model ensembles generally 
use spin-up procedures to start long-term simulations with carbon pools in the steady state (i.e., defined to have 
zero net carbon flux). This is unrealistic because even pre-industrial era carbon fluxes were not at equilibrium 
(Bauska et  al.,  2015). The steady state starting conditions explain the overwhelming majority of inter-model 
variation in present-day net ecosystem production (Huntzinger et al., 2020; Schwalm et al., 2019). Second, model 
uncertainty (in either model structure or parameter choices) is a dominant source of variation in carbon cycle 
forecasts (Bonan & Doney, 2018) and hindcasts (Bonan et al., 2019) of net carbon fluxes. In particular, soil and 
carbon turnover times—which are intimately tied to respiration rates—are poorly constrained (Pugh et al., 2020; 
Shi et al., 2020; Wieder et al., 2018).

To address these challenges, we used a Bayesian carbon cycle model data-fusion system called the Carbon Data 
Model Framework (CARDAMOM). For each grid cell across the globe, CARDAMOM estimates the initial 
conditions, ecosystem parameters, and carbon pool histories that best match a suite of observations (Bloom 
et al., 2016; Bloom & Williams, 2015). These assimilated observations (and observationally constrained prod-
ucts) include global maps of solar-induced fluorescence (SIF), net biosphere exchange (NBE), leaf area index 
(LAI), soil organic matter, and biomass. In addition to determining optimal carbon cycle parameters at each grid 
cell that best match observations, the CARDAMOM framework systematically quantifies parameter uncertainty, 
a methodological step that is absent in the majority of global carbon cycle models. A key innovation between 
the CARDAMOM runs performed here and other prognostic modeling efforts (e.g., Chen et al., 2019) found 
that CARDAMOM is constrained by estimates of the net biome exchange derived from atmospheric inversions. 
Combined with the model structure and other observations related to photosynthesis (e.g., LAI, SIF), the time 
series of this integrated flux can help to constrain the spatio-temporal variations in respiration fluxes that are 
otherwise relatively unknown. The use of NBE data has been shown to be particularly critical in constraining 
models, especially as model structural complexity increases (Famiglietti et  al., 2021). These dynamic fluxes, 
combined with information about the amount of carbon in the ecosystem (biomass and soil organic carbon), 
provide a constraint on the carbon turnover times and their sensitivity to changes in temperature at each grid cell.
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Although CARDAMOM contains only a single set of equations describing the carbon cycle, its flexibility to 
optimize parameters based on observations allows it to simulate a large range of possible flux dynamics with 
differing climatic sensitivities and growth patterns representative of variations within and across biomes glob-
ally. The flexibility in parameters allows for similar carbon flux dynamics between CARDAMOM and more 
complex conventional land surface models (Quetin et al., 2020). This suggests that some of the uncertainty in 
CARDAMOM's model structure (i.e., carbon cycle equations) is accounted for through its explicit determina-
tion of parameter uncertainty, which is not accounted for in conventional land surface model ensembles. Thus, 
CARDAMOM systematically accounts for a range of carbon cycle uncertainty at each grid point while also 
balancing a large range of data from observations there in contrast to more complex models where the spatial 
variation is more determined by broad categories of land cover types.

In this study, we used CARDAMOM to attribute what fraction of photosynthesis and respiration fluxes over the 
last century are due to climate change and CO2 fertilization, and constrain what proportion of enhanced GPP 
is lost to respiration instead of being stored in the terrestrial biosphere. We demonstrate that, across the globe, 
the  loss ratio of carbon gained is large, significantly modulating the response of the net carbon balance to climate 
change and enhanced CO2. We further demonstrate that variations in the loss ratio of carbon gained—rather than 
variations in carbon gain alone—significantly shift where the net land carbon sink has increased over the past 
century.

2.  Methods
To study changes in the carbon cycle from 1920 to 2015, we combined contemporary (between 2000–2015) 
atmospheric and land surface observations with historical (1920–2015) climate forcing to constrain a mechanistic 
carbon cycle model through data assimilation. This data assimilation is described in Section 2.1. We then ran 
model experiments that isolate climate change and rising CO2 effects to attribute the carbon cycle response to 
each change individually and together (Section 2.2).

2.1.  Retrieving Carbon Cycle Parameters for the Last Century Using Model-Data Fusion

We used the CARDAMOM data assimilation framework and present-day global observations (between the years 
2000 and 2015) to create a 1,000 member ensemble of observationally constrained carbon cycle parameters and 
initial conditions (Bloom et al., 2016; Quetin et al., 2020). CARDAMOM was used to optimize the initial condi-
tions of six carbon pools and one water pool, as well as 29 parameters that control the turnover rate, allocation, 
and environmental response of carbon and water in the Data Assimilation Linked Ecosystem Carbon v2.1.6 
(DALECv2.1.6) carbon cycle model, which underlies the CARDAMOM model-data fusion system (Figure 1). 
The optimized parameters are listed in Table 1.

The carbon cycle parameters and initial conditions (e.g., turnover times, photosynthesis sensitivities, etc.) that 
govern the response of the carbon cycle to increasing concentrations of CO2 and climate change were retrieved 
using a data assimilation approach (further described in Section 2.1.3) such that model outputs best match observed 
data. These parameters and initial conditions were retrieved independently for each grid point, avoiding the need 
to assume that parameters only vary with plant functional type. This grid-point-by-grid-point retrieval approach 
is common in most other data assimilation systems (e.g., Smith et al., 2019), and allows for the estimation of 
parameter uncertainty (Butler et al., 2017). In particular, the Carbon Monitoring System Flux (CMS-Flux)—an 
atmospheric inversion estimate of net biosphere exchange using satellite observations of atmospheric concentra-
tions of CO2—provided information on the carbon balance of the terrestrial ecosystem and constrained multiple 
aspects of the model (Liu et al., 2017, 2021).

2.1.1.  Carbon Cycle Representation

The carbon cycle representation in DALEC is as described in Quetin et  al.  (2020) and Bloom et  al.  (2016), 
except for an alteration to the calculation of GPP and stomatal conductance. To improve the representation of 
the effect of CO2 on stomatal conductance, we calculated leaf-level GPP and stomatal conductance using the 
coupled leaf photosynthesis-stomatal conductance models developed by Farquhar-Ball-Berry (Ball et al., 1987; 
Farquhar et al., 1980) and its analytical solution (Baldocchi, 1994) (see Supporting Information S1). This was a 
key update for representing centennial GPP and water use efficiency responses to climate change and the large 
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rise in atmospheric CO2 concentrations. As is common in land surface models incorporated in Earth system 
models, we scaled the leaf-level results of GPP and stomatal conductance to the canopy as a single “big leaf” 
with an exponential decay function of LAI (Sellers et al., 1992) (see Supporting Information S1). With this new 
model formulation, we also added an additional ecological dynamical constraint to those already contained in 
CARDAMOM (Bloom & Williams, 2015), that constrained the ratio of maximum carboxylation (Vcmax25) to the 
maximum rate of whole chain electron transport at saturated light (Jmax25) (see Text S1 in Supporting Informa-
tion S1) to limit combinations that are not observed (Walker et al., 2014).

2.1.2.  Assimilated Carbon Cycle Observations

Our whole assimilation run spanned 1920–2015, with assimilated observations from 2000–2015. All variables in 
Table 1 were optimized. The suite of observations (summarized in Table 2) was chosen to leverage new remote 
sensing observations of the global carbon cycle. A key set of assimilated observations is CMS-Flux net biome 
exchange (NBE), which was determined through atmospheric inversion (Bey et al., 2001; Liu et al., 2017, 2021). 
These NBE estimates have previously been used to better constrain global respiration fluxes (Konings 
et al., 2019), as well as the balance of photosynthesis and respiration across the tropics (Liu et al., 2017), and as 
emergent constraints on carbon-climate feedback (Barkhordarian et al., 2021), among others. Additional obser-
vations were derived from the following gridded datasets: remotely sensed solar induced fluorescence (SIF) as a 
proportional constraint for GPP (Bloom et al., 2020; Frankenberg et al., 2011), remotely sensed leaf area index 
(LAI) (Bi et al., 2015), remotely sensed carbon monoxide (CO) to constrain the fraction of carbon lost from pools 
due to fire (Bowman et al., 2017; Worden et al., 2017), remotely sensed total biomass (Carreiras et al., 2017; 
Saatchi et al., 2011), and soil organic matter from the Harmonized World Soil Database (HWSD) (Hiederer & 
Köchy, 2011).

The biomass and soil organic material observations were both drawn from a static map and assimilated in the 
year and/or month most representative of their observation (June of 2015 for biomass and the year 2000 for soil 
organic material) as in Bloom et al. (2016), Quetin et al. (2020). By contrast, NBE and SIF were assimilated as 
monthly time series from 2010–2015 and LAI as the long-term mean from 2010 to 2015. The CO observations 
constrain biomass burning emission fractions (see Table 1). Each data set was re-gridded to 4° × 5° latitude/
longitude on the Goddard Earth Observing System—Chem (GEOS-Chem) for consistency with the CMS-Flux 
estimates (see Table 2, Section S3 in Supporting Information S1). All CARDAMOM assimilation and forward 
runs (i.e., DALEC model runs with the retrieved optimal parameters) were also performed at this resolution.

2.1.3.  Data Assimilation Methodology

CARDAMOM parameter optimization was performed using Bayesian inference in which observations O are 
paired to model parameters, states, and fluxes (y) to form the likelihood function (Bloom & Williams, 2015; 

Figure 1.  Diagram of the main components of DALECv2.1.6 used in CARDAMOM (reproduced from Quetin et al. (2020)).
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Table 1 
Optimized Parameters and Initial Conditions in CARDAMOM, Corresponding Flat Prior Ranges, and Resulting State Variables

Parameter Description Prior range

Allocation fractions Fauto Autotrophic respiration 0.2–0.8

Flab NPP fraction to labile C 0.01–0.5 a

Ffol NPP fraction to foliar C 0.01–0.5 a

froo NPP fraction to fine root C 0.01–0.5 a

fwoo b NPP fraction to stem C 0.01–0.5 a

Turnover rates θwoo Stem C turnover rate 2.5 × 10 −5–10 −3 day −1

θroo Fine root C turnover rate 10 −4–10 −2 day −1

Θlit Litter C turnover rate at 𝐴𝐴 𝑇𝑇  , 𝐴𝐴 𝑃𝑃 10 −4–10 −2 day −1

θsom Soil organic matter (SOM) turnover rate at 𝐴𝐴 𝑇𝑇  , 𝐴𝐴 𝑃𝑃 10 −7–10 −3 day −1

θmin Mineralization of litter to SOM at 𝐴𝐴 𝑇𝑇  , 𝐴𝐴 𝑃𝑃 10 −5–10 −2 day −1

Θ Heterotrophic temperature dependence factor 0.018–0.08

sp Heterotrophic precipitation dependence factor 0.01–1

Canopy donset Leaf onset day 0–365.25

dfall Leaf fall day 0–365.25

cLMA Leaf C mass per area 5–200 g C m −2

cll Leaf loss fraction 1/8–1

clr Annual labile C release fraction 1/8–1

cronset Labile release period 10–100 days

crfall Leaf fall period 20–150 days

Fire πfoliar
 c Combustion factors of foliar C 0.01–1

πbiomass
 c Combustion factors of non-foliar biomass C 0.01–1

πSOM
 c Combustion factor of soil C 0.01–1

R Resilience factor 0.01–1

Water 𝐴𝐴 𝐴𝐴  Water stress threshold 1–10 4 kg H2O m −2

α  3Second order runoff decay constant 3 × 10 −7–0.03 mm −1 day −1

State variables d
𝐴𝐴 𝐴𝐴

(𝑡𝑡)

lab
  Labile C at time t 1–2,000 gC m −2

𝐴𝐴 𝐴𝐴
(𝑡𝑡)

fol
  Foliar C at time t 1–2,000 gC m −2

𝐴𝐴 𝐴𝐴
(𝑡𝑡)
roo  Fine root C at time t 1–2,000 gC m −2

𝐴𝐴 𝐴𝐴
(𝑡𝑡)
woo  Above- and below-ground woody C at time t 1–10 5 gC m −2

𝐴𝐴 𝐴𝐴
(𝑡𝑡)

lit
  Litter C at time t 1–2,000 gC m −2

𝐴𝐴 𝐴𝐴
(𝑡𝑡)
som  Soil organic C at time t 1–2 × 10 5 gC m −2

𝐴𝐴 𝐴𝐴
(𝑡𝑡)  Plant-available water at time t 1–10 4 mm

Ball Berry GPP Vcmax25 maximum carboxylation rate 10–400 μmol m − 2 s − 1 Walker 
et al. (2014)

Jmax Maximum rate of whole chain electron transport at saturated light 20–400 μmol m − 2 s − 1 Walker 
et al. (2014)

mstomata Stomatal conductance slope 2–30 Oleson et al. (2010)
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Bloom et al., 2016, 2020; Quetin et al., 2020). The likelihood probability function was calculated as the product 
of individual likelihoods:

P(𝑶𝑶|𝒚𝒚) = 𝑃𝑃LAI 𝑃𝑃SOM 𝑃𝑃ABGB 𝑃𝑃SIF 𝑃𝑃NBE 𝑃𝑃CO� (1)

where P(O|y) was the likelihood of y given observations (O) and PX was the probability of variable X given the 
observations of that variable (Table 2). This formulation assumes that the error between observations was inde-
pendent. PLAI, PSOM, PABGB, and PCO were derived as follows (Bloom et al., 2020; Quetin et al., 2020):

𝑃𝑃 ∝ e
−

1

2

∑
𝑖𝑖

(
𝑚𝑚i−𝑜𝑜𝑖𝑖

𝜎𝜎𝑖𝑖

)2
� (2)

where mi and oi correspond to the ith observation of the corresponding DALEC-modeled quantity and σi accounts 
for the combined effects of DALEC model structural error, model inputs, and observation errors. To better capture 
the interannual variability, PNBE included separate probability calculations with different uncertainty estimates 
for monthly and annual likelihoods and the units of SIF and GPP in PSIF were normalized by the mean, such 
that GPP dynamics were constrained by SIF even though the units are not the same. Consistent with previous 
CARDAMOM runs (e.g., Bloom et al., 2016, 2020; Quetin et al., 2020), uncertainties were ultimately chosen 
manually based on expert experience of the underlying data set and the impact on CARDAMOM's match to 
the observations. For example, the seasonal uncertainty of NBE is held within a reasonable range of observed 
uncertainty but small enough to induce a seasonal cycle in NBE. See Quetin et al. (2020) and included references 
for further details. Additionally, CARDAMOM applied “ecological and dynamical constraints” that reduce equi-

Table 1 
Continued

Parameter Description Prior range

bstomata Stomatal conductance intercept 0.001–0.1 mol m − 2 s − 1 Oleson 
et al. (2010)

gb Leaf boundary layer conductance to CO2 0.4–10 mol m − 2 s − 1 Martin et al. (1999)

Note. Reproduced with modifications in bold in the “Ball Berry GPP” section from Bloom et al. (2020), Quetin et al. (2020). Mean Temperature and Precipitation are 
represented by 𝐴𝐴 𝑇𝑇  and 𝐴𝐴 𝑃𝑃  respectively.
 aPrior ranges are conservative approximations; see Fox et al. (2009) and CARDAMOM sample code for details on sequential allocation fraction sampling in DALEC 
models.  bfwoo is equivalent to 1-fauto-ffol-flab.  cUsing the ecological and dynamical constraint approach (Bloom & Williams, 2015) we ensure that πfoliar > πbiomass and 
πfoliar > πSOM.  dOnly initial conditions (at time t = 0) are optimized in DALECv2.1.6.

Table 2 
Observation-Based Data Sets Assimilated Into the 4° × 5° CARDAMOM Simulation

Observation Years Data set description Uncertainty a

Leaf area index (LAI) 2010–2015 MODIS LAI retrievals b. ±log(1.2)

Soil organic matter (SOM) 2000 Soil C from harmonized world soils database (HWSD) Hiederer and 
Köchy (2011)

±log(1.5)

Above- and below-ground biomass (ABGB) 2015 GLAS-informed biomass map Carreiras et al. (2017); Saatchi et al. (2011) ≥±log(1.5) see  c

Solar-induced Fluorescence (SIF) 2010–2015 GOSAT retrievals of fluorescence Frankenberg et al. (2011)  d ±log(2) see  d

Fire C emissions (BB) 2010–2015 4° × 5° inverse estimates of fire C emissions Bowman et al. (2017), 
Worden et al. (2017).

±20%

Net Biosphere exchange (NBE) e 2010–2015 GOSAT CO2 and OCO2 CO2 derived 4° × 5° inverse estimates of terrestrial 
NBE Liu et al. (2017, 2021).

Seasonal = ±0.05 g C/m 2/d
Annual = ±0.02 g C/m 2/d

Note. Adapted with modification from Bloom et al. (2020), Quetin et al. (2020).
 aUncertainties denoted as ± log() indicate log-transformed model and observed quantities.  bOnly mean 2010–2015 LAI is assimilated into CARDAMOM, in order 
to mitigate the influence of seasonal LAI retrieval biases (Bi et al., 2015).  cSee ref (Bloom et al., 2016) for details on the uncertainty on ABGB.  dTime-resoved SIF 
is assimilated as a relative constraint on the temporal variability of GPP when temperatures are greater than 5°C and LAI is greater than 0.2.  eThe CMS-Flux NBE is 
spatially smoothed using a 3 × 3 gaussian smoother to reduce noise.
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finality (Huntzinger et al., 2017) by eliminating parameter combinations that may match observations despite 
limited ecological plausibility (Bloom & Williams, 2015).

Finally, we replaced the Adaptive Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC) algorithm, 
which was previously used in CARDAMOM (described in Bloom et al. (2020)) with a Differential Evolution 
Markov Chain Monte Carlo (DEMCMC) to sample P(y|O) (Braak, 2006). The DEMCMC allowed for an order of 
magnitude increase in random starting points to avoid local minima and path dependency, while it also provided 
modest improvement in computation time. The DEMCMC produced similar results to the MHMCMC algorithm 
in minimizing the mismatch between carbon cycle observations and model values.

2.1.4.  Model Inputs for Assimilation and Attribution

CARDAMOM requires external inputs for climate variables (insolation, precipitation, temperature, and vapor 
pressure deficit), atmospheric concentration of CO2, and burned area. For the assimilation runs, the climate 
inputs were taken from monthly CRUNCEP v7 reanalysis, which was chosen primarily for being available 
for most of the past century. CRUNCEP v7 is combined data sets of the Climate Research Unit (CRU) and 
reanalysis data from National Centers for Environmental Prediction (NCEP) (Viovy, 2018). The atmospheric 
concentrations of CO2 were taken from the historical values of the globally averaged annual means used by 
the Intergovernmental Panel on Climate Change with values for 2006–2015 taken from the RCP8.5 scenario, 
which includes a rise in CO2 of 98.6  ppm between 1920 and 2015 (Pachauri & Reisinger,  2008; Taylor 
et al., 2012).

CARDAMOM simulates fire fluxes based on burned area inputs and optimized emission factors relating burned 
area to emission rates of CO and CO2. These simulations are necessary to relate simulated net ecosystem 
productivity to observed net biome exchange (since the latter also accounts for fire fluxes). We used the Global 
Fire Emissions Database (GFED) V4.1s burned area to drive CARDAMOM during the observational period 
(1997–2015) (Randerson et al., 2017). Prior to the observational period, we synthesized burned areas at each 
point for the last century by randomly resampling from the distribution of observed GFED V4.1s observations for 
a given month. This synthesized burned area contained the same variance as the observations and did not have a 
long-term trend. We also investigated an empirical linkage between burned area and climate inputs but found the 

Figure 2.  Summary of the experimental design. We combine (pink) contemporary (2001–2016) atmospheric and land 
surface carbon cycle observations and historical climate forcing datasets (1920–2015) to constrain mechanistic carbon cycle 
responses to climate and atmospheric CO2. The model runs (gray) are forced by combinations of historical or control climate 
and CO2 concentrations to create the “Total”, “Control,” “eCO2,” and “Climate” scenarios.
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burned area synthesized from observations had less error relative to observed 
burned area in recent decades (not shown). Although we did not investigate 
fire specifically in this study, fire is implicitly accounted for in the carbon 
cycle data assimilation in CARDAMOM (Exbrayat et al., 2018).

2.2.  Attributing Change in the Carbon Cycle

Our overall approach for attributing the carbon cycle response to different 
past environmental changes is illustrated in Figure 2. We ran factorial forc-
ing scenarios that included different combinations of climate change and 
historically rising CO2: (a) historical climate change and increased atmos-
pheric CO2 concentrations, as during the assimilation stage (referred to as 
the “Total” scenario); (b) a control climate—repeating 1920 CRUNCEP 
meteorology—and steady atmospheric concentrations of CO2 equal to those 
in the 1920s (“Control” scenario); (c) a historically rising (enhanced) atmos-

pheric concentration of CO2 with a control climate (“eCO2” scenario); and (d) a scenario with historical climate 
changes but constant CO2 at 1920 levels (“Climate” scenario, i.e., without CO2 fertilization). The burned area was 
left the same as the assimilation runs across the experiments. These combined Total, Control, eCO2, and Climate 
experiments are similar to the approach used in previous studies to diagnose climate-carbon feedbacks in C4MIP 
(Arora et al., 2020; Friedlingstein et al., 2014; Jones et al., 2016), thus isolating the effect of CO2 on plant phys-
iology from the effect of climate change on the carbon cycle.

The attribution of change in carbon fluxes was then determined as the difference between the respective carbon 
fluxes of the forced scenarios (“Total”,“eCO2,” and “Climate”) minus the control run (“Control”). Throughout 
this manuscript, we denote the attributed change in a flux due to enhanced CO2 as 𝐴𝐴 ∆𝑋𝑋

eCO2 , the attributed change 
in a flux to climate as 𝐴𝐴 ∆𝑋𝑋

climate , and the attributed change when they both are combined as 𝐴𝐴 ∆𝑋𝑋
total . In each of the 

above cases, X denotes the carbon flux variable, such as GPP or Rh. For example, net ecosystem productivity due 
to enhanced CO2 (𝐴𝐴 ∆NEP

eCO2 ) is calculated as in Equation 3:

∆NEPeCO2 = NEPeCO2 − NEPControl

= NEP(control climate, historical CO2) − NEP(control climate, control CO2)
� (3)

Attribution was performed at each grid point on the cumulative sums from 1920 to 2015 and then spatially aggre-
gated to calculate global and regional attribution, with regions defined as in Figure 3. The spatial aggregation 
method is discussed in Text S2 in Supporting Information S1.

3.  Results and Discussion
3.1.  Comparison of CARDAMOM Simulations to Assimilated 
Estimates

We compared CARDAMOM to assimilated observations for verification 
as well as to alternate independent modeled and observed estimates of the 
carbon cycle. Compared to assimilated observations, CARDAMOM has a 
strong match of the seasonal cycle of net biosphere exchange for all regions 
and a slightly muted interannual variation (Figure S1 in Supporting Infor-
mation S1). Across space, the observations generally fall within CARDA-
MOM's uncertainty, although simulated leaf area is high and net biosphere 
exchange is somewhat lower than observations (i.e., simulated uptake is 
higher than observed) around the equator. In the Sahel region, biomass is low 
and soil organic matter is high relative to observations (Figure S2, Text S3 in 
Supporting Information S1). For the majority of land points, CARDAMOM 
was able to retrieve a solution (Figure 3, black dots). Failed points primarily 
fell within the highly arid regions of the globe where there is relatively little 

Figure 3.  Regional divisions used for analysis. Boreal (dark green), temperate 
(light green), wet tropics (blue), and dry tropics (light blue). Black dots show 
points where CARDAMOM was able to complete the inversion (i.e., find a 
solution) in the simulated number of iterations.

Figure 4.  CARDAMOM mean annual Gross Primary Productivity (GPP, 
Pg C/yr) parameter ensemble spread with CRUNCEP climate 2003–2015 
(Orange). Compared with observation-based estimates of global GPP from 
NIRv (2003–2015), FLUXCOM (2003–2015), and δO 18 (1980–2010), and 
terrestrial biosphere estimates from TRENDY V9 (2003–2015), MsTMIP 
(2003–2010) (all in gray). Figure structure and data for NIRv, FLUXCOM, 
MsTMIP, and δO18 adapted from Badgley et al. (2019). Whiskers of boxplot 
show 5th–95th percentiles. Gray shading demarks literature values that do not 
directly overlap in time.
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carbon cycle activity. Some failed points may encompass regions important 
to the interannual variation of the carbon cycle (Poulter et al., 2014).

3.2.  Comparison of CARDAMOM Simulations to Independent 
Estimates

CARDAMOM's simulated carbon cycle dynamics are within the range of 
several independent constraints that were not directly assimilated. The average 
global GPP from CARDAMOM (90 ± 1.3 Pg C/yr, 25–75th percentile uncer-
tainty for the period 2003–2015) is at the low end—but within the range of—
several alternative estimates (Figure 4). CARDAMOM GPP are generally on 
the low end of other estimates in the tropical regions, while CARDAMOM 
GPP is more similar in both the seasonal cycle and mean annual value in 
the Boreal and Temperate regions (Figure S4 in Supporting Information S1). 
These alternative estimates include observations (i.e., optical retrievals 
from NIRv and δO 18 ratios), an observationally informed machine learning 
model (FLUXCOM), or model ensembles (i.e., the Multi-scale synthesis 
and Terrestrial Model Intercomparison Project (MsTMIP) and Trends in 
Net Land-Atmosphere Carbon Exchange (TRENDY V9), see Table S1 in 
Supporting Information S1 for a list of models used) (Badgley et al., 2019; 
Friedlingstein et al., 2020; Huntzinger et al., 2013; Sitch et al., 2008; Welp 
et al., 2011).

The zonal pattern of the apparent turnover time of the total ecosystem carbon 
for CARDAMOM (calculated using the total summed soil and vegetation 
carbon stocks, as in Fan et al. (2020)) is broadly similar to that of a recent 
observation-derived estimate of global turnover times for the same time span 
(Fan et al. (2020), which is an updated version of the estimate in Carvalhais 
et al. (2014)), at least between the latitudes of 46°S and 46°N (Figure 5). This 
is reflected in the average values—41 years for CARDAMOM and 30 years 
for that of Fan et al. (2020) (Figure 5). At high latitudes, however, the two 

estimates in Figure 5 diverge significantly, with CARDAMOM predicting a shorter turnover time. This diver-
gence may relate to an under-prediction of the size of soil carbon pools in CARDAMOM in regions with complex 
permafrost dynamics, since CARDAMOM does not have an explicit representation of the dynamics for perma-
frost and frozen soils. In addition, the soil organic matter estimates at high latitudes are highly uncertain because 
of the limited number of measurements. The HWSD soil organic matter data set assimilated in CARDAMOM 
was shown to be on the low end of estimates in Fan et al. (2020), which would tend to drive CARDAMOM toward 
a shorter turnover time as well. Resolving this divergence and others illustrated above is likely to improve the 
accuracy and precision of carbon cycle analyses derived from CARDAMOM.

The difficulty in acquiring observations of soil carbon dynamics and their complexity makes the parameterization 
of turnover times in land surface models highly uncertain (Carvalhais et al., 2014; Friend et al., 2014; Koven 
et al., 2015), including at high latitudes (Koven et al., 2017). By contrast, the soil carbon turnover rates and initial 
carbon pool sizes in CARDAMOM are informed by observations of carbon fluxes and carbon states through 
data assimilation. The close match between the turnover times estimated by CARDAMOM and those estimated 
by observationally driven and quasi-independent (some datasets included in Fan et al. (2020) are assimilated in 
CARDAMOM, some are not) values hints at the success of CARDAMOM's ability to accurately infer carbon 
cycle dynamics based on the assimilated observations.

For more complete insight into the full historical dynamics simulated by CARDAMOM, we further compared it 
to independent model estimates of carbon flux time series from TRENDY V9 scenario 2 (change in climate and 
CO2 but not land use change) (Figure 6; Figure S3 in Supporting Information S1) and estimates of the sensitivity 
of GPP and NEP to increased CO2 (Figure 7) (Friedlingstein et al., 2020). We find that the net primary produc-
tivity in the CARDAMOM “Total” (Historical) run falls just below the TRENDY V9 set of models between 1920 
and about 1980 (Figure 6). Up until 1960, CARDAMOM was a weak source to the atmosphere, while TRENDY 

Figure 5.  The zonally averaged turnover time for total ecosystem C in 
CARDAMOM (orange) compared to the quasi-independent estimates of Fan 
et al., 2020 (black) calculated between 2001 and 2014. Shading demarks 
5th–95th range of ensembles, and the solid line is median.
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V9 was neutral to a sink throughout. These early differences highlight the difference in initial conditions between 
CARDAMOM and the models contained in TRENDY. While TRENDY models are run to equilibrium in 1700, 
CARDAMOM retrieves the initial carbon and water pools that serve to best match the observations assimilated. 
After 1980, the CARDAMOM historical runs fall within the spread of models contained in TRENDY, ending in 
2015 very close to the mean of the TRENDY models (Figure 6). This convergence in modern times may be due to 
the influence of similar observations on both models, which are systematically assimilated in CARDAMOM and 
assert influence over TRENDY as they are often used as validation. Like for NEP, the growth in CARDAMOM 
GPP since 1960 is much faster in CARDAMOM than in the TRENDY simulations (Figure S3 in Supporting 
Information S1), possibly due to analogous differences in initial condition parameterization and the influence 

Figure 7.  Comparison of the CARDAMOM mean sensitivity of carbon to eCO2 for percent change in GPP with (a) the 
CARDAMOM spread across space with FACE sites, (b) CARDAMOM parameter spread of global mean with TRENDY V9 
model spread. In (c) the absolute change in NEP per change in ppm CO2 for CARDAMOM simulations (orange, 1920–2015) 
including the ensemble uncertainty of the global mean and TRENDY V9 (1920–2015) models (Friedlingstein et al., 2020) 
and values drawn from literature for C4MIP (1901–2015) circles for (Friedlingstein et al., 2006, p. 20) and diamonds for 
(Arora et al., 2013) estimates, MsTMIP (1959–2010) from Huntzinger et al. (2017) (all in gray). All CARDAMOM values are 
for 1920–2015 For a fair comparison, the global aggregation was performed only where there was a successful CARDAMOM 
run (black dots in Figure 3). Whiskers of boxplots show 5th–95th percentiles. Gray shading demarks literature values that do 
not directly overlap in time.

Figure 6.  The annual timeseries of Net Ecosystem Productivity (NEP) from 1920–2015 from the CARDAMOM Historical 
run (orange, shading 5th–95th percentile of ensemble), the individual TRENDY v9 models (gray solid) (Friedlingstein 
et al., 2020), and their multi-model mean (gray dashed). For a fair comparison, the global aggregation was performed only 
where there was a successful CARDAMOM run (black dots in Figure 3).
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of modern measurements. The relatively rapid CARDAMOM GPP growth compared to TRENDY is consistent 
with the results of Campbell et al. (2017), who used carbonyl sulfide records to show that historical GPP growth 
is higher than that simulated by earth system models. During the period 1900–2013, GPP was estimated to grow 
by 31 ± 5%, consistent with 39 ± 7% simulated here during the slightly later period, 1920–2015. As also shown 
in Figure 4, the historical GPP simulated by CARDAMOM is lower than that simulated by the TRENDY models. 
Consistent with this pattern, autotrophic respiration is also lower than in the TRENDY models, while the heter-
otrophic respiration and LAI simulated by CARDAMOM are lower than most TRENDY models but still fall 
within the low end of their range (Figure S3 in Supporting Information S1).

Lastly, because our study focused in part on the effect of historical atmospheric CO2 increases on terrestrial 
carbon fluxes, we investigated whether the GPP and NEP CO2 sensitivity calculated by CARDAMOM was in 
line with that of alternative estimates. Specifically, we calculated the CARDAMOM sensitivity of gross primary 
productivity as a percentage (βGPP) and net ecosystem production (βNEP) to enhanced CO2. The βGPP and βNEP 
were calculated by dividing the fractional gain of GPP or the carbon gained through NEP from 1920 to 2015 
that was attributed to enhanced CO2 by the change in atmospheric concentration of CO2 over this period. Note 
that when calculating βGPP, unlike when calculating βNEP, the numerator was calculated as a percentage gain 
over 1920–2015 to facilitate comparison with literature values. Experimental manipulations in Free Air CO2 
Enrichment (FACE) studies provided observation-based but site-specific estimates of relative GPP sensitivity to 
increased CO2 (Hickler et al., 2008, p. 200), which cannot be directly compared to CARDAMOM because of its 
coarse resolution. Some differences in results between FACE studies and CARDAMOM would also be expected 
because of differences in the absolute atmospheric CO2 levels between the two. Nevertheless, when consider-
ing CARDAMOM's relative GPP sensitivity to CO2 across pixels, many pixels within the 5–95th percentile 
CARDAMOM range show the same sensitivity as observationally observed at four FACE experiments, which 
fall slightly below the 25th CARDAMOM percentile (Figure 7). Across the globe, model ensembles provide a 
further point of comparison. The GPP sensitivity to CO2 simulated by TRENDY V9 models and sampled at the 
CARDAMOM simulation points for 1920–2015 is generally much lower than that of CARDAMOM (Figure 7b). 
Like CARDAMOM, the TRENDY GPP CO2 sensitivity is also uncertain, both because of imperfect modeling 
assumptions and because no data are assimilated into TRENDY. It is thus difficult to ascertain whether or by how 
much CARDAMOM's GPP CO2 sensitivity is too high or TRENDY's is too low.

The relatively high CARDAMOM GPP sensitivity to CO2 relative to that of conventional models is also reflected 
in the comparison between CARDAMOM NEP sensitivity to CO2 and that of model intercomparisons, including 
estimates from TRENDY V9, which were regridded to CARDAMOM resolution and sampled where CARDA-
MOM provided a solution (black dots Figure 3), the Coupled Climate Carbon Cycle Model Intercomparison 
Project (C4MIP), and MsTMIP (Arora et al., 2013; Friedlingstein et al., 2006, 2020; Huntzinger et al., 2017) 
(Figure 7c). CARDAMOM's NEP sensitivity is on the high end of estimates from TRENDY and C4MIP, but 
in the middle of the range for MsTMIP. The different sensitivities exhibited by models from different intercom-
parison systems are reflective of their uncertainty. Nevertheless, the differences between conventional model 
ensembles and CARDAMOM add a note of caution to the results described in the manuscript.

Taken together, the reasonable—though imperfect—match between the CARDAMOM-simulated historical 
carbon cycle (Figures 4–7; Figures S3 and S4 in Supporting Information S1) and independent estimates demon-
strates CARDAMOM's utility for process attribution of historical fluxes, as performed below.

3.3.  Large Gains in GPP Under Rising CO2 Are Largely Offset by the Response of Respiration to 
Increased Plant Growth

Over the past century, the CARDAMOM simulations attribute large increases in global GPP to the combination 
of the historical enhanced atmospheric concentrations of CO2 and climate change (𝐴𝐴 ∆GPP

total  = 1294 ± 57 Pg C, 
where the uncertainty is ± the 25th–75th range divided by two) (Figure 8). This modeled the increase in global 
GPP is consistent with increasing GPP driving the satellite-observed greening of the Earth (Zhu et al., 2016). The 
increase in global GPP is primarily attributed to the GPP response to enhanced atmospheric concentrations of 
CO2 (𝐴𝐴 ∆GPP

eCO2  = 974 ± 76 Pg C), which accounts for 75% of the total GPP change. The larger response to CO2 
than the response to climate is consistent with past studies using traditional model ensembles (Arora et al., 2013; 
Melnikova & Sasai, 2020; Piao et al., 2013; Schwalm et al., 2020), although this study is the first to quantify this 
effect using a data-constrained methodology.
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Changes in climate over the past century have also impacted the carbon cycle. When only climate change is 
simulated, GPP decreases globally relative to the control experiment (𝐴𝐴 ∆GPP

Climate   =  −551  ±  72  Pg  C). The 
negative response of GPP to the Climate only scenario is broadly consistent with negative responses of NPP seen 
in C4MIP experiments (Friedlingstein et al., 2006). Except under particularly hot conditions in the wet tropics, 
increased temperatures generally increase GPP by increasing the chemical activity, but increased vapor pressure 
deficit reduces GPP by causing stomatal closure and reducing stomatal conductance (Fu et al., 2022). Overall, the 
potential benefits from warming due to climate change are offset by the effects of vapor pressure deficit-driven 
stomatal closure (Note that changes in sunlight and precipitation were relatively small between 1920 and 2015 
such that direct temperature and VPD effects were the dominant climate drivers.). This explains the global 
decrease in GPP in the climate change-only scenario. By contrast, the fact that ΔGPP is larger in the total scenario 
(𝐴𝐴 ∆GPP

total  = 1294 ± 57 Pg C) than in the enhanced CO2-only scenario (𝐴𝐴 ∆GPP
eCO2  = 974 ± 76 Pg C) suggests that 

when CO2 and climate changes interact, climate has a positive (rather than negative as in 𝐴𝐴 ∆GPP
Climate ) influence 

on the Total scenario. Under the increased CO2 scenario, CO2-induced stomatal closure limits the impact of vapor 
pressure deficit-induced stomatal closure. This is consistent with observations (Dusenge et al., 2019) and with 
the recognition that stomatal closure in response to enhanced CO2 reduces evaporation (Lemordant et al., 2018; 
Swann et al., 2016). As a result, the direct positive effects of increasing temperature on GPP dominate, and the 
effect of climate change on GPP is positive. This coupling between the carbon-concentration and carbon-climate 
feedbacks allows climate changes to have a positive impact on GPP when increases in atmospheric CO2 are 
present.

Figure 8.  Magnitude of global cumulative sum of terrestrial carbon fluxes from 1920 to 2015 attributed to (a) combined 
climate change and enhanced CO2 (“Total” minus “Control”), (b) enhanced CO2 alone (“eCO2” minus “Control”), and 
(c) climate change alone (“Climate” minus “Control”). Distributions for gross primary productivity (𝐴𝐴 ∆ GPP), ecosystem 
respiration (𝐴𝐴 ∆Reco), autotrophic respiration (𝐴𝐴 ∆Ra), and heterotrophic respiration from litter and soils (𝐴𝐴 ∆Rh) (Pg C). Colors per 
legend. The median of the whole distribution is shown as a colored dot-dashed line, while the percentiles of the 5th–95th and 
25th–75th percentiles are shown as gradually darker shading. Reco is equal to Rh + Ra.
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The majority of the enhanced ecosystem respiration over the last century is due to a change in plant growth (i.e., 
input of additional carbon into the ecosystem) rather than an acceleration in the turnover of carbon due to the 
sensitivity to increasing temperature. Our analysis attributes a large increase in ecosystem respiration in response 
to the increased plant growth that occurs due to CO2 fertilization. The majority of 𝐴𝐴 ∆GPP

eCO2 is lost to respiration 
(𝐴𝐴 ∆𝑅𝑅

eCO2

eco   = 774 ± 72 Pg C out of 𝐴𝐴 ∆GPP
eCO2  = 974 ± 76 Pg C) (Figure 8). This increase in respiration is due to both 

autotrophic respiration (𝐴𝐴 ∆𝑅𝑅
eCO2

𝑎𝑎   = 460 ± 46 Pg C) and heterotrophic respiration (𝐴𝐴 ∆𝑅𝑅
eCO2

ℎ
  = 315 ± 28 Pg C) rising 

significantly. This large respiration response to CO2-fertilization-driven increases in photosynthesis is consistent 
with observations in site-scale free-air carbon dioxide enrichment (FACE) studies, which have found that elevated 
atmospheric CO2 concentrations lead to increases in soil respiration (King et  al.,  2004). By contrast, FACE 
studies find only mixed evidence for significant increases in soil organic matter (Hungate et al., 2009; Norby 
& Zak, 2011), which is consistent with our result that a large portion of stimulated photosynthesis is ultimately 
respired rather than stored in carbon pools.

The increase in respiration in the eCO2 scenario (𝐴𝐴 ∆𝑅𝑅
eCO2

eco   = 774 ± 72 Pg C) is large relative to that of the Total 
scenario (𝐴𝐴 ∆𝑅𝑅

total

eco    =  1,074  ±  52 Pg C), suggesting that most of the attributable respiration increase is due to 
increases in the magnitude of respiring carbon pools, rather than climate-driven increases in respiration rates. The 
importance of plant growth to changes in respiration over long periods of time in our experiments is consistent 
with observations of both a tight coupling between GPP and respiration across space and a strong relationship 
between interannual variations in GPP and respiration in flux tower observations (Baldocchi, 2008; Dusenge 
et al., 2019; Fernández-Martínez et al., 2014). The high respiration response to plant growth is driven by both 
autotrophic 𝐴𝐴 (∆𝑅𝑅

total
𝑎𝑎   = 595 ± 33 Pg C) and heterotrophic respiration 𝐴𝐴 (∆𝑅𝑅

total

ℎ
  = 481 ± 21 Pg C) in both the total 

and eCO2 scenarios.

The dominance of the respiration response to carbon inputs alone rather than to soil warming, for example, 
highlights how the baseline (unmodified by climate) turnover times of different carbon pools play a large role in 
determining how much of the increased plant growth will stay in the ecosystem and the ultimate net carbon sink. 
These baseline turnover rates are set by many processes, including the allocation of carbon between different 
plant pools with different respiration rates and microbial effects on heterotrophic respiration. This emphasizes 
the need for global carbon cycle studies to consider how the base turnover rates of different respiration pools are 
calibrated across the globe and not just their extensively studied climatic sensitivities for example, (Mahecha 
et al., 2010; Nottingham et al., 2020).

3.4.  Respiration Response to CO2 Shapes Regional Balance of the Net Carbon Flux

The changes in carbon sinks from rising CO2 concentrations and changing climate vary across regions due to 
both spatial variation in enhanced carbon input (GPP) (Figure 9) and the respiration response. It is not surprising 
that the wet tropics, the region with the highest GPP on Earth (Badgley et al., 2019), also have the largest GPP 
increase due to enhanced CO2. However, even though the greatest increase in ecosystem carbon input (GPP) 
is in the wet tropics, the total attributed 𝐴𝐴 ∆NEP

total is largest in the temperate region (17.8  ±  0.7  Mg  C/ha). 
This increase in the temperate carbon sink per unit area is larger than that in the wet tropics (14.2 ± 1.1 Mg C/
ha), about twice as large as that in the boreal (7.9 ± 1.0 Mg C/ha) and in the dry tropics (11.6 ± 0.9 Mg C/ha) 
(Figure 9). Thus, the net carbon sink in the temperate region has increased more than the net carbon sink in the 
wet tropics, despite GPP increasing more in the wet tropics (𝐴𝐴 ∆GPP

total  = 133.5 ± 15.5 Mg C/ha for wet tropics 
and 𝐴𝐴 ∆GPP

total  = 92.8 ± 4.6 Mg C/ha for temperate). Independent atmospheric inversions for net carbon flux 
also find a strong carbon sink in the present-day temperate region compared to the nearly neutral tropics (Byrne 
et al., 2020; Gaubert et al., 2019). This geographic mismatch between the largest increase in GPP and the larg-
est increase in the carbon sink demonstrates the importance of respiration dynamics in determining the carbon 
balance of an ecosystem.

We can quantitatively summarize the response of the ecosystem to increased carbon input as the amount of new 
carbon lost compared to the increased carbon input, or the “loss ratio of carbon gained” 𝐴𝐴 (∆𝑅𝑅∕∆GPP) . Note 
that the loss ratio of carbon gained is a distinct quantity from the ratio between total Reco and GPP in historical 
fluxes (Baldocchi, 2008) as it reflects the response to added carbon input rather than to total carbon input. As 
future ecosystem dynamics respond to climate change and increasing atmospheric CO2 concentrations, the loss 
ratio of carbon gained tracks how well it will serve as a sink in comparison to changes in carbon input. The 
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𝐴𝐴 (∆𝑅𝑅eco∕∆GPP)
total changes significantly across regions (Figure 10). It is highest in the wet tropics (89 ± 1%), 

where the highest portion of increased GPP is lost to respiration. It is lowest in the boreal region (76 ± 4%), such 
that more of the increased GPP remains stored in boreal ecosystems than in other regions. Both the temperate 
(81 ± 0.5%) and dry tropics (84 ± 1%) regions have values between the boreal and wet tropics. Across regions, 

Figure 10.  Ranges for the loss ratio of carbon gained (𝐴𝐴 ∆R/ 𝐴𝐴 ∆ GPP) for (a) heterotrophic respiration, (b) autotrophic 
respiration, and (c) ecosystem respiration. Larger values mean more carbon lost to the atmosphere. Gray denotes Total run 
minus Control and green denotes elevated CO2 run minus Control. Vertical line is the median, colored box is the 25th–75th 
range, and whiskers are the 5th to 95th range. Note that the x-axis is not the same scale for all subplots.

Figure 9.  Distribution of cumulative per area change in 𝐴𝐴 ∆GPP
total (a, c, e, g) and 𝐴𝐴 ∆NEP

total (b, d, f, h). Note: NEP = −NEE. 
The carbon flux change by region is attributed to the Total forcing (i.e., Total—Control) which includes both increasing CO2 
and changing climate. Darker shading corresponds to 5th–95th percentile and 25th–75th percentile of distributions due to 
both parameter and climate spread. Note that the y-axis is the same scale for all subplots in each column.



Global Biogeochemical Cycles

QUETIN ET AL.

10.1029/2022GB007478

15 of 21

the loss ratios of carbon gained in the Total scenarios are only a few percentage points larger than the equivalent 
values in the eCO2 scenario, which does not experience climate change (Figure 10). The small change due to 
climate change shows that the loss ratio of carbon gained is primarily set by the base turnover rates in different 
regions, rather than changes in the turnover rates due to their climatic sensitivities.

The loss ratio of carbon gained due to heterotrophic respiration varies more between regions (e.g., from 44 ± 1.5% 
in the dry tropics to 24 ± 3.4% in the boreal) than that due to autotrophic respiration, which varies no more than 
12% points across regions (Figure 10). Thus, spatial variations in the loss ratio of carbon gained are primarily 
driven by spatial patterns of the heterotrophic respiration's loss ratio of carbon gained (i.e., 𝐴𝐴 (∆𝑅𝑅ℎ∕∆GPP)

total ), 
rather than by that for autotrophic respiration (Figure  10). The higher heterotrophic respiration responses to 
enhanced CO2 in tropical regions offset the much larger response of GPP to CO2 fertilization in the (wet) tropics, 
dropping the attributable net carbon flux below that of other regions. Note that our finding that the relatively large 
enhancements of CO2 in the wet tropics translate to greater heterotrophic respiration fluxes is consistent with 
isotopic evidence from the flanks of two Costa Rican volcanoes, which are exposed to higher CO2 concentrations. 
In these areas, a strong relationship was found between trees with high xylem concentrations of CO2—suggesting 
higher CO2 fertilization—and higher nearby soil respiration fluxes (Bogue et al., 2019).

This study is the first to explicitly compare the number of additional carbon fluxes across regions. The pattern 
of spatial variability in the loss ratio of carbon gained has significant consequences for the land carbon sink. 
While the increase in wet tropical GPP attributable to climate change and CO2 is 1.4–4.0 times higher than in 
other regions, the high loss ratio of carbon gained causes the wet tropical gain in NEP to be only 0.8–1.8 times 
higher than that of other regions. This suggests a more limited regional importance for the wet tropics than would 
be apparent if only photosynthesis CO2 fertilization rates were considered. Additionally, if it can be further 
supported, the finding of a particularly high respiration response to CO2 fertilization in the wet tropics, driven 
by both soil and plant respiration rates, could be a useful constraint for understanding the net carbon flux of 
undisturbed tropical forests, particularly since they are underrepresented in most in situ observational networks 
(Bond-Lamberty & Thomson, 2018; Jian et al., 2020; Schimel et al., 2015).

Figure 11.  The global distributions of loss ratio of carbon gained (𝐴𝐴 ∆ R total/ 𝐴𝐴 ∆ GPP total) for (a) heterotrophic respiration (Rh) 
and autotrophic respiration (Ra), and (b) the ecosystem respiration (Reco) over GPP. Points are the same ratio for individual 
TRENDY V9 models (Friedlingstein et al., 2020). Darker shading in the histograms for CARDAMOM distributions is for the 
5th–95th and 25th–75th ranges. Note that the y axis is the same scale for both subplots.
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3.5.  Strong Relationship Between Respiration and GPP Constrained by Observations

CARDAMOM-derived loss ratios of carbon gained show reasonably high overlap with those from land surface 
models included in the TRENDY V9 S2 experiment. This holds true for each of the cases where either the total, 
heterotrophic, or autotrophic respiration is considered—though TRENDY generally has a higher loss ratio of 
carbon gained for autotrophic respiration and thus total respiration (Figure 11). This similarity occurs despite 
the disagreement between CARDAMOM and TRENDY in the mean GPP magnitude and the sensitivity of GPP 
to increasing CO2 (Figures 4 and 7), and despite the very different inputs used to parameterize CARDAMOM 
and TRENDY (i.e., parameters derived from observations in CARDAMOM, using plant functional types in 
TRENDY). This similarity is likely due to the similar process representations of carbon allocation and respiration 
in the two ensembles. However, the uncertainty across the TRENDY models is considerably larger than that of 
the observationally constrained CARDAMOM ensemble.

The CARDAMOM loss ratio of carbon gained varies within a few percentage points at regional and global 
scales (Figures 10 and 11). Put another way, there is a strong proportional relationship between the 𝐴𝐴 ∆GPP

total 
and the 𝐴𝐴 ∆𝑅𝑅

total

eco  , 𝐴𝐴 ∆𝑅𝑅
total
𝑎𝑎  , and 𝐴𝐴 ∆𝑅𝑅

total

ℎ
 (as well as in the eCO2 and Climate scenarios, not shown). This strong rela-

tionship echoes a previous finding by Hajima et al. (2014), who found a tightly constrained ratio of changes in 
heterotrophic respiration to net primary productivity in response to climate change and enhanced atmospheric 
concentrations of CO2 in Earth System Models. Overall, the loss ratio of carbon gained may be a useful addi-
tional constraint on model representations of carbon cycle responses to global change, particularly given the large 
remaining uncertainties in the magnitude of global fluxes of respiration (Bond-Lamberty, 2018; Jian et al., 2022) 
and GPP (Badgley et al., 2019; Welp et al., 2011).

Nevertheless, the tightly constrained nature and value of the loss ratio of carbon gained are subject to the uncer-
tainties in the CARDAMOM system (as further discussed in Section 3.6 below) that will require further valida-
tion ideally across different assimilation systems driven by observational data. These could include, for example, 
other data assimilation systems (Fox et al., 2018; Peylin et al., 2016; Smith et al., 2020) or CARDAMOM runs 
with alternative observational constraints. For example, studies using radiocarbon have found that most carbon 
cycle models simulate unrealistically young median ages of soil C (Shi et al., 2020), suggesting that our simula-
tion and related studies would benefit from the explicit assimilation of radiocarbon observations. Overall, as more 
and longer time series of observations become available, CARDAMOM and other data assimilation systems have 
the potential to further constrain the loss ratio of carbon gained.

3.6.  Uncertainties in CARDAMOM Flux Estimates

A number of relevant terrestrial carbon cycle processes are not explicitly represented in CARDAMOM, adding 
uncertainty to the above results. These include soil priming (van Groenigen et al., 2014), changes in microbial 
biomass (Wieder et  al.,  2013), lateral carbon flux (Regnier et  al.,  2013) and vegetation demography (Fisher 
et  al.,  2018). CARDAMOM uses relatively simplistic treatments of autotrophic respiration (proportional to 
photosynthesis with spatially variable carbon use efficiency) and heterotrophic respiration (using just two pools, 
litter and soil organic matter). Temporally variable nutrient limitations are also not represented, though spatial 
variability in nutrient limitations can be partially accounted for through reduced Vcmax25 values. Past attribution 
studies using conventional model ensembles have found a significant effect from including the nitrogen cycle by 
lowering the carbon gained due to increased atmospheric concentrations of CO2 (Huntzinger et al., 2017), lower-
ing the accumulation of soil carbon (Huntingford et al., 2022), and nutrient deposition impacts on photosynthesis 
(Schwalm et al., 2020). However, note that Chen et al. (2019) found that accounting for nitrogen deposition only 
mildly enhanced the simulated NEP since 1981 (Chen et al., 2019).

Another key source of uncertainty in this study is the fact that CARDAMOM does not explicitly represent land 
use and land cover change (LULCC). Because a model without an explicit LULCC representation is assimilating 
observations that are influenced by the true historical LULCC, the CARDAMOM-retrieved parameters (and the 
associated carbon pools and fluxes) are likely to partially reflect historical LULCC. The lack of sub-grid scale 
heterogeneity in vegetation type in CARDAMOM makes it difficult to simulate LULCC. However, a sensitivity 
analysis can be performed by altering simulated burned area patterns to mimic land cover changes due to LULCC. 
When tested for several representative locations, this sensitivity analysis did not lead to any systematic change 
in the loss ratio of carbon gained or any other significant qualitative changes to the results discussed above 
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(not shown). This suggests that the key qualitative conclusions of this manuscript are robust to LULCC effects, 
consistent with Schwalm et al. (2020) who found LULCC to be a relatively minor factor affecting GPP over the 
last century and much smaller than CO2 fertilization. Nevertheless, our sensitivity analyses were performed only 
on a small number of representative pixels and do not fully capture the potential effects of LULCC, which adds 
some uncertainty to our results.

CARDAMOM's advantage relative to conventional terrestrial biosphere model ensembles is not that it has an 
inherently more accurate ecosystem respiration representation, but that the observational constraints allow an 
exploration of the dynamics of carbon fluxes that is not dependent on a priori assumptions of the magnitude of 
the climatic sensitivities or base turnover times of various respiring carbon pools. Because dynamic net biome 
exchange and a snapshot of carbon stocks are assimilated into CARDAMOM (along with other observations such 
as SIF and LAI, and uncertainty accounting), turnover and respiration parameters can be explicitly constrained. 
This constraint is dependent in part on the assumed observational uncertainty. Although data assimilation systems 
can suffer from equifinality issues that can limit the utility of the assimilation outside the observational period, 
CARDAMOM's ecological and dynamic constraints (Bloom & Williams,  2015) and intermediate structural 
complexity (Famiglietti et al., 2021) help to reduce such equifinality. Thus, turnover should be more accurately 
constrained (see Figure 5) than in past prognostic models that use only information about vegetation states (e.g., 
Chen et al., 2019; Melnikova and Sasai, 2020).

Despite the above limitations, previous research has shown that CARDAMOM is capable of representing ecosys-
tem temporal dynamics similar to those of more structurally complex conventional carbon cycle models (See 
Figures 6–8 in Quetin et al. (2020)). In effect, CARDAMOM's explicit treatment of parameter uncertainty allows 
it to partially compensate for the added structural uncertainty compared to more complex models. As such, and 
based on the reasonable match to observations discussed in Text S3 in Supporting Information S1 and Section 3.1, 
we expect the qualitative conclusions of our attribution calculations above to be robust.

4.  Conclusions
We used data assimilation in CARDAMOM to attribute changes in the terrestrial carbon cycle in response to 
enhanced atmospheric concentrations of CO2 and climate change over the past century. Our analysis allowed for 
the retrieval of parameters, including initial conditions, that are consistent with present-day observations of the 
carbon cycle at each grid point. This approach avoids the assumed spin-up to equilibrium that is common in other 
modeled projections of the carbon cycle, and estimates carbon cycle dynamics based on ecosystem observations 
rather than broad distributions of plant functional types.

The response of the carbon cycle is dominated by increased plant growth due to CO2 fertilization across the globe 
and in all regions. We identify the largest per area increase in GPP to be in the wet tropics, and the largest per area 
carbon sink to be in the temperate region. The location of the largest net carbon sink region per area is due to the 
combination of large increases in plant growth with a relatively low “loss ratio of carbon gained” in the temperate 
region compared to the more productive wet tropics. While the increase in wet tropical GPP is 1.4–4.0  times 
higher than in other regions, the wet tropical gain in NEP is only 0.8–1.8 times higher because respiration fluxes 
are much more responsive than in other regions even without considering changes in soil temperature.

The global loss ratio of carbon gained (globally, 83 ± 0.6%) across the CARDAMOM ensemble's range of param-
eters is much less uncertain than the range of GPP increase and accounts for the majority of increased produc-
tivity respired to the atmosphere. A significant portion of the loss ratio of carbon gained is due to heterotrophic 
respiration as a response to increased plant growth. This suggests that the base turnover rates of an ecosystem—
rather than the sensitivity of those turnover rates to climate change—is the dominant driver of how much and 
where the carbon fixed by enhanced CO2 is stored in ecosystems under past and near-term climate change.

Data Availability Statement
All CARDAMOM data sets presented in this analysis are available on figshare (https://doi.org/10.6084/ 
m9.figshare.19952315, https://doi.org/10.6084/m9.figshare.19952246, https://doi.org/10.6084/m9.figshare. 
19951928), as well as the analysis script (https://doi.org/10.6084/m9.figshare.21545547) and CARDAMOM code 
(https://doi.org/10.6084/m9.figshare.21834501). All other data sets used are publicly available (see Section 2).

https://doi.org/10.6084/m9.figshare.19952315
https://doi.org/10.6084/m9.figshare.19952315
https://doi.org/10.6084/m9.figshare.19952246
https://doi.org/10.6084/m9.figshare.19951928
https://doi.org/10.6084/m9.figshare.19951928
https://doi.org/10.6084/m9.figshare.21545547
https://doi.org/10.6084/m9.figshare.21834501


Global Biogeochemical Cycles

QUETIN ET AL.

10.1029/2022GB007478

18 of 21

References
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., et al. (2013). Carbon–concentration and carbon–climate feed-

backs in CMIP5 Earth System Models. Journal of Climate, 26(15), 5289–5314. https://doi.org/10.1175/JCLI-D-12-00494.1
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., et  al. (2020). Carbon–concentration and carbon–

climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17(16), 4173–4222. https://doi.org/10.5194/
bg-17-4173-2020

Badgley, G., Anderegg, L. D. L., Berry, J. A., & Field, C. B. (2019). Terrestrial gross primary production: Using NIRV to scale from site to globe. 
Global Change Biology, 25(11), 14729–23740. https://doi.org/10.1111/gcb.14729

Baldocchi, D. (1994). An analytical solution for coupled leaf photosynthesis and stomatal conductance models (Vol. 12).
Baldocchi, D. (2008). “Breathing” of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement 

systems. Australian Journal of Botany, 56(1), 1. https://doi.org/10.1071/BT07151
Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis 

under different environmental conditions. In J. Biggins (Ed.), Progress in photosynthesis research (pp. 221–224). Springer Netherlands. https://
doi.org/10.1007/978-94-017-0519-6_48

Barkhordarian, A., Bowman, K. W., Cressie, N., Jewell, J., & Liu, J. (2021). Emergent constraints on tropical atmospheric aridity—Carbon 
feedbacks and the future of carbon sequestration. Environmental Research Letters, 16(11), 114008. https://doi.org/10.1088/1748-9326/ac2ce8

Bauska, T. K., Joos, F., Mix, A. C., Roth, R., Ahn, J., & Brook, E. J. (2015). Links between atmospheric carbon dioxide, the land carbon reservoir 
and climate over the past millennium. Nature Geoscience, 8(5), 383–387. https://doi.org/10.1038/ngeo2422

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., et  al. (2001). Global modeling of tropospheric chemistry 
with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research, 106(D19), 23073–23095. https://doi.
org/10.1029/2001JD000807

Bi, J., Knyazikhin, Y., Choi, S., Park, T., Barichivich, J., Ciais, P., et al. (2015). Sunlight mediated seasonality in canopy structure and photo-
synthetic activity of Amazonian rainforests. Environmental Research Letters, 10(6), 064014. https://doi.org/10.1088/1748-9326/10/6/064014

Bloom, A. A., Bowman, K. W., Liu, J., Konings, A. G., Worden, J. R., Parazoo, N. C., et al. (2020). Lagged effects regulate the inter-annual 
variability of the tropical carbon balance. Biogeosciences, 17(24), 6393–6422. https://doi.org/10.5194/bg-17-6393-2020

Bloom, A. A., Exbrayat, J.-F., Van Der Velde, I. R., Feng, L., & Williams, M. (2016). The decadal state of the terrestrial carbon cycle: Global 
retrievals of terrestrial carbon allocation, pools, and residence times. Proceedings of the National Academy of Sciences of United States, 113(5), 
1285–1290. https://doi.org/10.1073/pnas.1515160113

Bloom, A. A., & Williams, M. (2015). Constraining ecosystem carbon dynamics in a data-limited world: Integrating ecological “common sense” 
in a model-data fusion framework. Biogeosciences, 12(5), 1299–1315. https://doi.org/10.5194/bg-12-1299-2015

Bogue, R. R., Schwandner, F. M., Fisher, J. B., Pavlick, R., Magney, T. S., Famiglietti, C. A., et al. (2019). Plant responses to volcanically elevated 
CO2 in two Costa Rican forests. Biogeosciences, 16(6), 1343–1360. https://doi.org/10.5194/bg-16-1343-2019

Bonan, G. B., & Doney, S. C. (2018). Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 
359(6375). https://doi.org/10.1126/science.aam8328

Bonan, G. B., Lombardozzi, D. L., Wieder, W. R., Oleson, K. W., Lawrence, D. M., Hoffman, F. M., & Collier, N. (2019). Model structure 
and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Global Biogeochemical Cycles, 33(10), 
1310–1326. https://doi.org/10.1029/2019GB006175

Bond-Lamberty, B. P. (2018). New techniques and data for understanding the global soil respiration flux. Earth’s Future, 6(9), 1176–1180. https://
doi.org/10.1029/2018EF000866

Bond-Lamberty, B. P., & Thomson, A. M. (2018). A global database of soil respiration data, version 4.0. https://doi.org/10.3334/ORNLDAAC/1578
Bowman, K. W., Liu, J., Bloom, A. A., Parazoo, N. C., Lee, M., Jiang, Z., et al. (2017). Global and Brazilian carbon response to El Niño Modoki 

2011-2010: Brazilian carbon balance. Earth and Space Science, 4(10), 637–660. https://doi.org/10.1002/2016EA000204
Braak, C. J. F. T. (2006). A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real 

parameter spaces. Statistics and Computing, 16(3), 239–249. https://doi.org/10.1007/s11222-006-8769-1
Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R., Fazayeli, F., et al. (2017). Mapping local and global variability in plant 

trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 114(51), E10937. https://doi.org/10.1073/
pnas.1708984114

Byrne, B., Liu, J., Lee, M., Baker, I., Bowman, K. W., Deutscher, N. M., et al. (2020). Improved constraints on northern extratropical CO2 fluxes 
obtained by combining surface-based and space-based atmospheric CO2 measurements. Journal of Geophysical Research: Atmospheres, 
125(15), e2019JD032029. https://doi.org/10.1029/2019JD032029

Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A., Launois, T., et al. (2017). Large historical growth in global terrestrial gross 
primary production. Nature, 544(7648), 84–87. https://doi.org/10.1038/nature22030

Carreiras, J. M. B., Quegan, S., Le Toan, T., Ho Tong Minh, D., Saatchi, S. S., Carvalhais, N., et al. (2017). Coverage of high biomass forests by the 
ESA BIOMASS mission under defense restrictions. Remote Sensing of Environment, 196, 154–162. https://doi.org/10.1016/j.rse.2017.05.003

Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., et al. (2014). Global covariation of carbon turnover times with 
climate in terrestrial ecosystems. Nature, 514(7521), 213–217. https://doi.org/10.1038/nature13731

Chen, J. M., Ju, W., Ciais, P., Viovy, N., Liu, R., Liu, Y., & Lu, X. (2019). Vegetation structural change since 1981 significantly enhanced the 
terrestrial carbon sink. Nature Communications, 10(1), 4259. https://doi.org/10.1038/s41467-019-12257-8

Chi, C., Riley William, J., Colin, P. I., & Keenan Trevor, F. (2022). CO2 fertilization of terrestrial photosynthesis inferred from site to global 
scales. Proceedings of the National Academy of Sciences of the United States of America, 119(10), e2115627119. https://doi.org/10.1073/
pnas.2115627119

Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on 
photosynthesis, photorespiration and respiration. New Phytologist, 221(1), 32–49. https://doi.org/10.1111/nph.15283

Ellsworth, D. S., Anderson, I. C., Crous, K. Y., Cooke, J., Drake, J. E., Gherlenda, A. N., et al. (2017). Elevated CO2 does not increase eucalypt 
forest productivity on a low-phosphorus soil. Nature Climate Change, 7(4), 279–282. https://doi.org/10.1038/nclimate3235

Exbrayat, J., Smallman, T. L., Bloom, A. A., Hutley, L. B., & Williams, M. (2018). Inverse Determination of the influence of fire on vegetation 
carbon turnover in the pantropics. Global Biogeochemical Cycles, 32(12), 1776–1789. https://doi.org/10.1029/2018GB005925

Famiglietti, C. A., Smallman, T. L., Levine, P. A., Flack-Prain, S., Quetin, G. R., Meyer, V., et al. (2021). Optimal model complexity for terrestrial 
carbon cycle prediction. Biogeosciences, 18(8), 2727–2754. https://doi.org/10.5194/bg-18-2727-2021

Fan, N., Koirala, S., Reichstein, M., Thurner, M., Avitabile, V., Santoro, M., et al. (2020). Apparent ecosystem carbon turnover time: Uncertain-
ties and robust features. Earth System Science Data, 12(4), 2517–2536. https://doi.org/10.5194/essd-12-2517-2020

Acknowledgments
GRQ, KWB, AAB, and AGK were 
supported by NASA NNH16ZDA001N-
IDS. GRQ and AGK were also supported 
by NSF DEB-1942133. GRQ was also 
supported by NSF Grant 2003205. NSD 
acknowledges support from Stanford 
University. Part of this work was carried 
out at the Jet Propulsion Laboratory, 
California Institute of Technology, under 
a contract with the National Aeronaut-
ics and Space Administration. ATT 
acknowledges funding from the NSF 
Grants 2003205 and 2017949, the USDA 
National Institute of Food and Agricul-
ture, Agricultural and Food Research 
Initiative Competitive Programme Grant 
2018-67012-31496 and the University 
of California Laboratory Fees Research 
Program Award No. LFR-20-652467.

https://doi.org/10.1175/JCLI-D-12-00494.1
https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.1111/gcb.14729
https://doi.org/10.1071/BT07151
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1088/1748-9326/ac2ce8
https://doi.org/10.1038/ngeo2422
https://doi.org/10.1029/2001JD000807
https://doi.org/10.1029/2001JD000807
https://doi.org/10.1088/1748-9326/10/6/064014
https://doi.org/10.5194/bg-17-6393-2020
https://doi.org/10.1073/pnas.1515160113
https://doi.org/10.5194/bg-12-1299-2015
https://doi.org/10.5194/bg-16-1343-2019
https://doi.org/10.1126/science.aam8328
https://doi.org/10.1029/2019GB006175
https://doi.org/10.1029/2018EF000866
https://doi.org/10.1029/2018EF000866
https://doi.org/10.3334/ORNLDAAC/1578
https://doi.org/10.1002/2016EA000204
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1073/pnas.1708984114
https://doi.org/10.1073/pnas.1708984114
https://doi.org/10.1029/2019JD032029
https://doi.org/10.1038/nature22030
https://doi.org/10.1016/j.rse.2017.05.003
https://doi.org/10.1038/nature13731
https://doi.org/10.1038/s41467-019-12257-8
https://doi.org/10.1073/pnas.2115627119
https://doi.org/10.1073/pnas.2115627119
https://doi.org/10.1111/nph.15283
https://doi.org/10.1038/nclimate3235
https://doi.org/10.1029/2018GB005925
https://doi.org/10.5194/bg-18-2727-2021
https://doi.org/10.5194/essd-12-2517-2020


Global Biogeochemical Cycles

QUETIN ET AL.

10.1029/2022GB007478

19 of 21

Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. 
Planta, 149(1), 78–90. https://doi.org/10.1007/BF00386231

Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M., et al. (2014). Nutrient availability as the key regulator 
of global forest carbon balance. Nature Climate Change, 4(6), 471–476. https://doi.org/10.1038/nclimate2177

Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze, M. C., Farrior, C. E., et al. (2018). Vegetation demographics in 
Earth system models: A review of progress and priorities. Global Change Biology, 24(1), 35–54. https://doi.org/10.1111/gcb.13910

Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife, T., et al. (2009). The REFLEX project: Comparing different algo-
rithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data. Agricultural and Forest Meteorol-
ogy, 149(10), 1597–1615. https://doi.org/10.1016/j.agrformet.2009.05.002

Fox, A. M., Hoar, T. J., Anderson, J. L., Arellano, A. F., Smith, W. K., Litvak, M. E., et al. (2018). Evaluation of a data assimilation system for land 
surface models using CLM4.5. Journal of Advances in Modeling Earth Systems, 10(10), 2471–2494. https://doi.org/10.1029/2018MS001362

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., et al. (2011). New global observations of the terrestrial carbon 
cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 38(17), L17706. https://
doi.org/10.1029/2011gl048738

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., et al. (2006). Climate–carbon cycle feedback analysis: Results from the 
C4MIP model intercomparison. Journal of Climate, 19(14), 3337–3353. https://doi.org/10.1175/JCLI3800.1

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., & Knutti, R. (2014). Uncertainties in CMIP5 climate 
projections due to carbon cycle feedbacks. Journal of Climate, 27(2), 511–526. https://doi.org/10.1175/JCLI-D-12-00579.1

Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., et al. (2020). Global carbon budget 2020. Earth System 
Science Data, 12(4), 3269–3340. https://doi.org/10.5194/essd-12-3269-2020

Friedlingstein, P., & Prentice, I. C. (2010). Carbon–climate feedbacks: A review of model and observation based estimates. Current Opinion in 
Environmental Sustainability, 2(4), 251–257. https://doi.org/10.1016/j.cosust.2010.06.002

Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule, P., et al. (2014). Carbon residence time dominates uncertainty in 
terrestrial vegetation responses to future climate and atmospheric CO2. Proceedings of the National Academy of Sciences of the United States 
of America, 111(9), 3280–3285. https://doi.org/10.1073/pnas.1222477110

Fu, Z., Ciais, P., Prentice, I. C., Gentine, P., Makowski, D., Bastos, A., et al. (2022). Atmospheric dryness reduces photosynthesis along a large 
range of soil water deficits. Nature Communications, 13(1), 989. https://doi.org/10.1038/s41467-022-28652-7

Gaubert, B., Stephens, B. B., Basu, S., Chevallier, F., Deng, F., Kort, E. A., et al. (2019). Global atmospheric CO2 inverse models converging on 
neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate (Vol. 18).

Hajima, T., Tachiiri, K., Ito, A., & Kawamiya, M. (2014). Uncertainty of concentration–terrestrial carbon feedback in Earth System Models. 
Journal of Climate, 27(9), 3425–3445. https://doi.org/10.1175/JCLI-D-13-00177.1

Hickler, T., Smith, B., Prentice, I. C., Mjöfors, K., Miller, P., Arneth, A., & Sykes, M. T. (2008). CO2 fertilization in temperate FACE experiments 
not representative of boreal and tropical forests. Global Change Biology, 14(7), 1531–1542. https://doi.org/10.1111/j.1365-2486.2008.01598.x

Hiederer, R., & Köchy, M. (2011). Global soil organic carbon estimates and the harmonized world soil database. EUR, 25225, 79.
Hungate, B. A., van Groenigen, K.-J., Six, J., Jastrow, J. D., Luo, Y., de Graaff, M.-A., et al. (2009). Assessing the effect of elevated carbon dioxide on 

soil carbon: A comparison of four meta-analyses. Global Change Biology, 15(8), 2020–2034. https://doi.org/10.1111/j.1365-2486.2009.01866.x
Huntingford, C., Burke, E. J., Jones, C. D., Jeffers, E. S., & Wiltshire, A. J. (2022). Nitrogen cycle impacts on CO2 fertilization and climate forcing 

of land carbon stores. Environmental Research Letters, 17(4), 044072. https://doi.org/10.1088/1748-9326/ac6148
Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King, A. W., Fang, Y., et al. (2017). Uncertainty in the response of terrestrial carbon sink 

to environmental drivers undermines carbon-climate feedback predictions. Scientific Reports, 7(1), 4765. https://doi.org/10.1038/s41598-017- 
03818-2

Huntzinger, D. N., Schaefer, K., Schwalm, C., Fisher, J. B., Hayes, D., Stofferahn, E., et al. (2020). Evaluation of simulated soil carbon dynamics 
in Arctic-Boreal ecosystems. Environmental Research Letters, 15(2), 025005. https://doi.org/10.1088/1748-9326/ab6784

Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., et al. (2013). The North American carbon program multi-
scale synthesis and terrestrial model intercomparison project—Part 1: Overview and experimental design. Geoscientific Model Development, 
6(6), 2121–2133. https://doi.org/10.5194/gmd-6-2121-2013

Jian, J., Bailey, V., Dorheim, K., Konings, A. G., Hao, D., Shiklomanov, A. N., et al. (2022). Historically inconsistent productivity and respiration 
fluxes in the global terrestrial carbon cycle. Nature Communications, 13(1), 1733. https://doi.org/10.1038/s41467-022-29391-5

Jian, J., Vargas, R., Anderson-Teixeira, K., Stell, E., Herrmann, V., Horn, M., et al. (2020). A restructured and updated global soil respiration 
database (SRDB-V5). Data, Algorithms, and Models, 13(2), 255–267. https://doi.org/10.5194/essd-13-255-2021

Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., et al. (2020). The fate of carbon in a mature forest under 
carbon dioxide enrichment. Nature, 580(7802), 227–231. https://doi.org/10.1038/s41586-020-2128-9

Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., et  al. (2016). C4MIP—The coupled climate–carbon 
cycle model intercomparison project: Experimental protocol for CMIP6. Geoscientific Model Development, 9(8), 2853–2880. 
https://doi.org/10.5194/gmd-9-2853-2016

King, J. S., Hanson, P.  J., Bernhardt, E., DeAngelis, P., Norby, R. J., & Pregitzer, K. S. (2004). A multiyear synthesis of soil respiration 
responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology, 10(6), 1027–1042. https://doi.org/ 
10.1111/j.1529-8817.2003.00789.x

Konings, A. G., Bloom, A. A., Liu, J., Parazoo, N. C., Schimel, D. S., & Bowman, K. W. (2019). Global satellite-driven estimates of heterotrophic 
respiration. Biogeosciences, 16(11), 2269–2284. https://doi.org/10.5194/bg-16-2269-2019

Koven, C. D., Hugelius, G., Lawrence, D. M., & Wieder, W. R. (2017). Higher climatological temperature sensitivity of soil carbon in cold than 
warm climates. Nature Climate Change, 7(11), 817–822. https://doi.org/10.1038/nclimate3421

Koven, C. D., Lawrence, D. M., & Riley, W. J. (2015). Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability 
but not deep soil nitrogen dynamics. Proceedings of the National Academy of Sciences of the United States of America, 112(12), 3752–3757. 
https://doi.org/10.1073/pnas.1415123112

Kuzyakov, Y., Horwath, W. R., Dorodnikov, M., & Blagodatskaya, E. (2019). Review and synthesis of the effects of elevated atmospheric CO2 
on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biology and Biochemistry, 128, 66–78. https://doi.
org/10.1016/j.soilbio.2018.10.005

Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I., & Scheff, J. (2018). Critical impact of vegetation physiology on the continental hydrologic 
cycle in response to increasing CO2. Proceedings of the National Academy of Sciences of the United States of America, 115(16), 4093–4098. 
https://doi.org/10.1073/pnas.1720712115

https://doi.org/10.1007/BF00386231
https://doi.org/10.1038/nclimate2177
https://doi.org/10.1111/gcb.13910
https://doi.org/10.1016/j.agrformet.2009.05.002
https://doi.org/10.1029/2018MS001362
https://doi.org/10.1029/2011gl048738
https://doi.org/10.1029/2011gl048738
https://doi.org/10.1175/JCLI3800.1
https://doi.org/10.1175/JCLI-D-12-00579.1
https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/10.1016/j.cosust.2010.06.002
https://doi.org/10.1073/pnas.1222477110
https://doi.org/10.1038/s41467-022-28652-7
https://doi.org/10.1175/JCLI-D-13-00177.1
https://doi.org/10.1111/j.1365-2486.2008.01598.x
https://doi.org/10.1111/j.1365-2486.2009.01866.x
https://doi.org/10.1088/1748-9326/ac6148
https://doi.org/10.1038/s41598-017-03818-2
https://doi.org/10.1038/s41598-017-03818-2
https://doi.org/10.1088/1748-9326/ab6784
https://doi.org/10.5194/gmd-6-2121-2013
https://doi.org/10.1038/s41467-022-29391-5
https://doi.org/10.5194/essd-13-255-2021
https://doi.org/10.1038/s41586-020-2128-9
https://doi.org/10.5194/gmd-9-2853-2016
https://doi.org/10.1111/j.1529-8817.2003.00789.x
https://doi.org/10.1111/j.1529-8817.2003.00789.x
https://doi.org/10.5194/bg-16-2269-2019
https://doi.org/10.1038/nclimate3421
https://doi.org/10.1073/pnas.1415123112
https://doi.org/10.1016/j.soilbio.2018.10.005
https://doi.org/10.1016/j.soilbio.2018.10.005
https://doi.org/10.1073/pnas.1720712115


Global Biogeochemical Cycles

QUETIN ET AL.

10.1029/2022GB007478

20 of 21

Liu, J., Baskaran, L., Bowman, K., Schimel, D., Bloom, A. A., Parazoo, N. C., et  al. (2021). Carbon monitoring system flux net biosphere 
exchange 2020 (CMS-flux NBE 2020). Earth System Science Data, 13(2), 299–330. https://doi.org/10.5194/essd-13-299-2021

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., et al. (2017). Contrasting carbon cycle responses of the tropical conti-
nents to the 2015–2016 El Niño. Science, 358(6360). https://doi.org/10.1126/science.aam5690

Lovenduski, N. S., & Bonan, G. B. (2017). Reducing uncertainty in projections of terrestrial carbon uptake. Environmental Research Letters, 
12(4), 044020. https://doi.org/10.1088/1748-9326/aa66b8

Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H., Seneviratne, S. I., et al. (2010). Global convergence in the temperature 
sensitivity of respiration at ecosystem level. Science, 329(5993), 838–840. https://doi.org/10.1126/science.1189587

Martin, T. A., Hinckley, T. M., Meinzer, F. C., & Sprugel, D. G. (1999). Boundary layer conductance, leaf temperature and transpiration of Abies 
amabilis branches. Tree Physiology, 19(7), 435–443. https://doi.org/10.1093/treephys/19.7.435

Melnikova, I., & Sasai, T. (2020). Effects of anthropogenic activity on global terrestrial gross primary production. Journal of Geophysical 
Research: Biogeosciences, 125(3), e2019JG005403. https://doi.org/10.1029/2019JG005403

Norby, R. J., & Zak, D. R. (2011). Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology Evolution 
and Systematics, 42(1), 181–203. https://doi.org/10.1146/annurev-ecolsys-102209-144647

Nottingham, A. T., Meir, P., Velasquez, E., & Turner, B. L. (2020). Soil carbon loss by experimental warming in a tropical forest. Nature, 
584(7820), 234–237. https://doi.org/10.1038/s41586-020-2566-4

Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter, J., et al. (2010). Technical description of version 4.0 of the 
community land model (CLM).

Pachauri, R., & Reisinger, A. (2008). Climate change 2007. Synthesis report. Contribution of working groups I, II, and III to the fourth assessment 
report. Cambridge University Press.

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., et  al. (2016). A new stepwise carbon cycle data assimilation 
system using multiple datastreams to constrain the simulated land surface carbon cycle. Geoscientific Model Development, 9(9), 3321– 
3346. https://doi.org/10.5194/gmd-9-3321-2016

Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., et al. (2013). Evaluation of terrestrial carbon cycle models for their response 
to climate variability and to CO2 trends. Global Change Biology, 19(7), 2117–2132. https://doi.org/10.1111/gcb.12187

Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., et al. (2014). Contribution of semi-arid ecosystems to interannual variability of 
the global carbon cycle. Nature, 509(7502), 600–603. https://doi.org/10.1038/nature13376

Pugh, T. A. M., Rademacher, T., Shafer, S. L., Steinkamp, J., Barichivich, J., Beckage, B., et al. (2020). Understanding the uncertainty in global 
forest carbon turnover. Biogeosciences, 17(15), 3961–3989. https://doi.org/10.5194/bg-17-3961-2020

Quetin, G. R., Bloom, A. A., Bowman, K. W., & Konings, A. G. (2020). Carbon flux variability from a relatively simple ecosystem model 
with assimilated data is consistent with terrestrial biosphere model estimates. Journal of Advances in Modeling Earth Systems, 12(3), 
e2019MS001889. https://doi.org/10.1029/2019MS001889

Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., & Kasibhatla, P. S. (2017). Global fire emissions database, version 4.1 (GFEDv4). 
https://doi.org/10.3334/ornldaac/1293

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. (2013). Anthropogenic perturbation of the carbon 
fluxes from land to ocean. Nature Geoscience, 6(8), 597–607. https://doi.org/10.1038/ngeo1830

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., et al. (2011). Benchmark map of forest carbon stocks in 
tropical regions across three continents. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9899– 
9904. https://doi.org/10.1073/pnas.1019576108

Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S., Townsend, P., et al. (2015). Observing terrestrial ecosystems and the carbon cycle 
from space. Global Change Biology, 21(5), 1762–1776. https://doi.org/10.1111/gcb.12822

Schwalm, C. R., Huntinzger, D. N., Michalak, A. M., Schaefer, K., Fisher, J. B., Fang, Y., & Wei, Y. (2020). Modeling suggests fossil fuel 
emissions have been driving increased land carbon uptake since the turn of the 20th Century. Scientific Reports, 10(1), 9059. https://doi.
org/10.1038/s41598-020-66103-9

Schwalm, C. R., Schaefer, K., Fisher, J. B., Huntzinger, D., Elshorbany, Y., Fang, Y., et al. (2019). Divergence in land surface modeling: Linking 
spread to structure. Environmental Research Communications, 1(11), 111004. https://doi.org/10.1088/2515-7620/ab4a8a

Sellers, P.  J., Berry, J. A., Collatz, G. J., Field, C. B., & Hall, F. G. (1992). Canopy reflectance, photosynthesis, and transpiration. III. A 
reanalysis using improved leaf models and a new canopy integration scheme. Remote Sensing of Environment, 42(3), 187–216. https://doi.
org/10.1016/0034-4257(92)90102-P

Shi, Z., Allison, S. D., He, Y., Levine, P. A., Hoyt, A. M., Beem-Miller, J., et al. (2020). The age distribution of global soil carbon inferred from 
radiocarbon measurements. Nature Geoscience, 13(8), 555–559. https://doi.org/10.1038/s41561-020-0596-z

Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., et al. (2008). Evaluation of the terrestrial carbon cycle, future plant 
geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9), 
2015–2039. https://doi.org/10.1111/j.1365-2486.2008.01626.x

Smith, W. K., Fox, A. M., MacBean, N., Moore, D. J. P., & Parazoo, N. C. (2019). Constraining estimates of terrestrial carbon uptake: New oppor-
tunities using long-term satellite observations and data assimilation. New Phytologist, nph, 225(1), 16055–16112. https://doi.org/10.1111/
nph.16055

Smith, W. K., Fox, A. M., MacBean, N., Moore, D. J. P., & Parazoo, N. C. (2020). Constraining estimates of terrestrial carbon uptake: New oppor-
tunities using long-term satellite observations and data assimilation. New Phytologist, 225(1), 105–112. https://doi.org/10.1111/nph.16055

Swann, A. L. S., Hoffman, F. M., Koven, C. D., & Randerson, J. T. (2016). Plant responses to increasing CO2 reduce estimates of climate impacts 
on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 113(36), 10019–10024. https://doi.
org/10.1073/pnas.1604581113

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological 
Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y., & Hungate, B. A. (2014). Faster decomposition under increased atmospheric CO2 limits 
soil carbon storage. Science, 344(6183), 508–509. https://doi.org/10.1126/science.1249534

Viovy, N. (2018). CRUNCEP version 7—Atmospheric forcing data for the community land model. Research Data Archive at the National Center 
for Atmospheric Research, Computational and Information Systems Laboratory. Retrieved from http://rda.ucar.edu/datasets/ds314.3/

Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. A., Domingues, T. F., et al. (2014). The relationship of leaf photosynthetic 
traits—Vcmax and Jmax—To leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecology and Evolu-
tion, 4(16), 3218–3235. https://doi.org/10.1002/ece3.1173

https://doi.org/10.5194/essd-13-299-2021
https://doi.org/10.1126/science.aam5690
https://doi.org/10.1088/1748-9326/aa66b8
https://doi.org/10.1126/science.1189587
https://doi.org/10.1093/treephys/19.7.435
https://doi.org/10.1029/2019JG005403
https://doi.org/10.1146/annurev-ecolsys-102209-144647
https://doi.org/10.1038/s41586-020-2566-4
https://doi.org/10.5194/gmd-9-3321-2016
https://doi.org/10.1111/gcb.12187
https://doi.org/10.1038/nature13376
https://doi.org/10.5194/bg-17-3961-2020
https://doi.org/10.1029/2019MS001889
https://doi.org/10.3334/ornldaac/1293
https://doi.org/10.1038/ngeo1830
https://doi.org/10.1073/pnas.1019576108
https://doi.org/10.1111/gcb.12822
https://doi.org/10.1038/s41598-020-66103-9
https://doi.org/10.1038/s41598-020-66103-9
https://doi.org/10.1088/2515-7620/ab4a8a
https://doi.org/10.1016/0034-4257(92)90102-P
https://doi.org/10.1016/0034-4257(92)90102-P
https://doi.org/10.1038/s41561-020-0596-z
https://doi.org/10.1111/j.1365-2486.2008.01626.x
https://doi.org/10.1111/nph.16055
https://doi.org/10.1111/nph.16055
https://doi.org/10.1111/nph.16055
https://doi.org/10.1073/pnas.1604581113
https://doi.org/10.1073/pnas.1604581113
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1126/science.1249534
http://rda.ucar.edu/datasets/ds314.3/
https://doi.org/10.1002/ece3.1173


Global Biogeochemical Cycles

QUETIN ET AL.

10.1029/2022GB007478

21 of 21

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R., et al. (2020). Integrating the evidence for a terrestrial 
carbon sink caused by increasing atmospheric CO2. New Phytologist, nph, 229(5), 16866–22445. https://doi.org/10.1111/nph.16866

Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper, S. C., Yoshimura, K., et al. (2011). Interannual variability in the oxygen 
isotopes of atmospheric CO2 driven by El Niño. Nature, 477(7366), 579–582. https://doi.org/10.1038/nature10421

Wieder, W. R., Bonan, G. B., & Allison, S. D. (2013). Global soil carbon projections are improved by modelling microbial processes. Nature 
Climate Change, 3(10), 909–912. https://doi.org/10.1038/nclimate1951

Wieder, W. R., Hartman Melannie, D., Sulman Benjamin, N., Wang, Y.-P., Koven Charles, D., & Bonan Gordon, B. (2018). Carbon cycle 
confidence and uncertainty: Exploring variation among soil biogeochemical models. Global Change Biology, 24(4), 1563–1579. https://doi.
org/10.1111/gcb.13979

Worden, J. R., Bloom, A. A., Pandey, S., Jiang, Z., Worden, H. M., Walker, T. W., et al. (2017). Reduced biomass burning emissions reconcile 
conflicting estimates of the post-2006 atmospheric methane budget. Nature Communications, 8(1), 2227. https://doi.org/10.1038/s41467- 
017-02246-0

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., et al. (2016). Greening of the Earth and its drivers. Nature Climate Change, 
6(8), 791–795. https://doi.org/10.1038/nclimate3004

References From the Supporting Information
MacBean, N., Scott, R. L., Biederman, J. A., Peylin, P., Kolb, T., Litvak, M. E., et al. (2021). Dynamic global vegetation models underesti-

mate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environmental Research Letters, 16(9), 094023. https://doi.
org/10.1088/1748-9326/ac1a38

Stettz, S. G., Parazoo, N. C., Bloom, A. A., Blanken, P. D., Bowling, D. R., Burns, S. P., et al. (2022). Resolving temperature limitation on spring 
productivity in an evergreen conifer forest using a model–data fusion framework. Biogeosciences, 19(2), 541–558. https://doi.org/10.5194/
bg-19-541-2022

Wu, D., Piao, S., Zhu, D., Wang, X., Ciais, P., Bastos, A., et al. (2020). Accelerated terrestrial ecosystem carbon turnover and its drivers. Global 
Change Biology, 15224(9), 5052–5062. https://doi.org/10.1111/gcb.15224

Yang, Y., Bloom, A. A., Ma, S., Levine, P., Norton, A., Parazoo, N. C., et  al. (2022). CARDAMOM-FluxVal version 1.0: A FLUX-
NET-based validation system for CARDAMOM carbon and water flux estimates. Geoscientific Model Development, 15(4), 1789–1802. 
https://doi.org/10.5194/gmd-15-1789-2022

https://doi.org/10.1111/nph.16866
https://doi.org/10.1038/nature10421
https://doi.org/10.1038/nclimate1951
https://doi.org/10.1111/gcb.13979
https://doi.org/10.1111/gcb.13979
https://doi.org/10.1038/s41467-017-02246-0
https://doi.org/10.1038/s41467-017-02246-0
https://doi.org/10.1038/nclimate3004
https://doi.org/10.1088/1748-9326/ac1a38
https://doi.org/10.1088/1748-9326/ac1a38
https://doi.org/10.5194/bg-19-541-2022
https://doi.org/10.5194/bg-19-541-2022
https://doi.org/10.1111/gcb.15224
https://doi.org/10.5194/gmd-15-1789-2022

	Attributing Past Carbon Fluxes to CO2 and Climate Change: Respiration Response to CO2 Fertilization Shifts Regional Distribution of the Carbon Sink
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methods
	2.1. Retrieving Carbon Cycle Parameters for the Last Century Using Model-Data Fusion
	2.1.1. Carbon Cycle Representation
	2.1.2. Assimilated Carbon Cycle Observations
	2.1.3. Data Assimilation Methodology
	2.1.4. Model Inputs for Assimilation and Attribution

	2.2. Attributing Change in the Carbon Cycle

	3. Results and Discussion
	3.1. Comparison of CARDAMOM Simulations to Assimilated Estimates
	3.2. Comparison of CARDAMOM Simulations to Independent Estimates
	3.3. Large Gains in GPP Under Rising CO2 Are Largely Offset by the Response of Respiration to Increased Plant Growth
	3.4. Respiration Response to CO2 Shapes Regional Balance of the Net Carbon Flux
	3.5. Strong Relationship Between Respiration and GPP Constrained by Observations
	3.6. Uncertainties in CARDAMOM Flux Estimates

	4. Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


