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Abstract: Vegetation greening has been widely occurring on the Chinese Loess Plateau, and the
contributions of human land-use management have been well-understood. However, the influences
of climatic change and CO2 fertilization on reported vegetation variations remain difficult to de-
termine. Therefore, we quantified the impacts of multiple factors on vegetation changes for the
Chinese Loess Plateau from 2000 to 2019 by integrating satellite-based leaf area index (LAI) and
simulated LAI from dynamic global vegetation models. More than 96% of the vegetated areas of
the Loess Plateau exhibited greening trends, with an annually averaged satellite-based LAI rate
of 0.037 ± 0.006 m2 m−2 a−1 (P < 0.01). Human land-use management and environmental change
have jointly accelerated vegetation growth, explaining 54% and 46% of the overall greening trend,
respectively. CO2 fertilization and climate change explain 55% and 45% of the greening trend due to
environmental change, respectively; solar radiation and precipitation were the main driving factors
for climate-induced vegetation greenness (P < 0.05). Spatially, the eastern part of the Loess Plateau
was dominated by CO2 fertilization, while the western part was mainly affected by climate change.
Furthermore, solar radiation was the key limiting factor affecting LAI variations in the relatively
humid area, while precipitation was the major influencing factor in relatively arid areas. This study
highlights the important roles that climate change and CO2 fertilization have played in vegetation
greenness in recent decades of the Loess Plateau, despite strong influences of anthropogenic footprint.

Keywords: greening; human land-use management; climate change; CO2 fertilization; Loess Plateau

1. Introduction

Satellite-based data have revealed increasing greenness across terrestrial ecosystems since
2000 [1,2]. Vegetation changes are closely associated with variations in the carbon budget and
ecohydrological processes. The rate and scale of projected climate changes and anthropogenic
disturbances in the 21st century have already profoundly impacted terrestrial ecosystems and
will continue to do so [3]. To better formulate climate change adaptation and coping strategies,
an in-depth understanding of the drivers of vegetation dynamics is required [4]. However,
how much multiple environmental factors affect vegetation variations in the context of intense
anthropogenic activities has not been clearly quantified.

Environmental change and human land-use management are thought to alter veg-
etation growth directly or indirectly. First, it has been shown that warming promotes
the greening of vegetation at high latitudes [5] by boosting metabolism and extending
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the growing season [6], but these positive influences appear to have diminished in the
past decade [7,8]. Second, precipitation dominates vegetation greening and browning in
water-limited ecosystems [9,10]. Third, increasing CO2 concentrations in the atmosphere
enhances vegetation growth through promoted leaf photosynthesis [11,12]. Globally, dy-
namic vegetation models and satellite-observed data have suggested that CO2 fertilization
dominates the vegetation restoration processes [13]. Finally, human land-use management
is also an important driver of vegetation restoration, as more than 1/3 of vegetation growth
at the global scale can be attributed to human land-use management [14,15]. Overall,
vegetation growth is affected by various environmental and human factors.

Studies have tried to separate the effects of climate change and anthropogenic activities
on vegetation growth [16–20]. The residual method is a commonly used method, which is
based on linear regression and is simple to operate [18,21], but it usually ignores the nonlin-
ear effects of climate change on vegetation, leading to large uncertainties in the assessment
results. Machine learning methods can overcome these deficiencies, but they lack a clear
mechanism [16]. For example, machine learning methods have difficulty disentangling the
influences of CO2 fertilization and climatic change. Therefore, to better understand the
driving factors of vegetation change, it is necessary to improve the quantification method
using process-based vegetation models.

LAI is a clear physical attribute and can reflect the change in vegetation growth,
meanwhile LAI is not only a state variable of process-based models, but also can be
retrieved from remote sensing data [1]. Integrated satellite-based LAI and simulated
LAI derived from terrestrial biosphere process-based models were used previously to
discern natural and human impacts on vegetation variation [2]. Moreover, process-based
models allow quantitative separation of the drivers of vegetation change using factorial
experiments [13,22,23]. Therefore, the integration of remote sensing vegetation index and
process-based model simulation results can deepen our understanding of the driving forces
of vegetation change.

The Loess Plateau is an ecologically fragile region that has experienced destruction and
restoration processes due to the joint effects of environmental change and human land-use
management [24,25]. Increasing precipitation has significantly promoted vegetation restora-
tion; anthropogenic activities such as ecological projects, cropland irrigation, and urban
expansion have also significantly altered vegetation growth in the Loess Plateau [24,26].
Several studies have tried to separate the effects of various environmental factors on vegeta-
tion growth and the contributions of human land-use management [24,27–29]; however, the
influences of climatic change and CO2 fertilization on reported vegetation variations remain
difficult to determine in the Loess Plateau. Therefore, this study aims to: (1) investigate
the spatial-temporal dynamics of vegetation variation on the Loess Plateau from 2000 to
2019; (2) quantitatively separate the influences of environmental and anthropogenic factors
on vegetation growth; (3) and identify the relative contribution of CO2 fertilization and
climate change on environmentally induced vegetation variation.

2. Materials and Methods
2.1. Study Area

The Loess Plateau is located in northern China and covers 7 provinces (Figure 1).
The region belongs to the semi-arid continental monsoon zone, with a multiyear average
temperature between 4 ◦C and 14 ◦C, and cumulative precipitation between 50 mm and
700 mm. The Loess Plateau has experienced destruction and then restoration processes due
to natural and anthropogenic factors [30].
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Figure 1. The location and land cover of Loess Plateau in 2015.

2.2. Data and Preprocessing
2.2.1. Satellite-Based LAI

The satellite-based LAI acquired from the MOD15A2H product was used to reflect the
actual vegetation. The spatial resolution of MODIS LAI is 500 m × 500 m, and temporal
resolution is 8 days. The average value of LAI over the growing season (June–August) was
calculated to represent actual vegetation growth variations from 2000 to 2019.

2.2.2. Simulated LAI

The simulated LAI acquired from the TRENDY v9 project (https://blogs.exeter.ac.uk/
trendy/, accessed on 1 July 2022) was used to assess the vegetation variations caused by
environmental change. Five dynamic global vegetation models (i.e., ISAM, LPJ-GUESS,
LPX-Bern, ORCHIDEEv3, and VISIT) with a relatively high spatial resolution of 0.5◦ × 0.5◦

was used.
The TRENDY project conducted three simulation scenarios to separate the impacts

of different environmental factors on ecosystems. The simulation scenarios “S1” and
“S2” were used in this study. For scenario “S1”, only atmospheric CO2 concentration
was allowed to vary during the study period; for scenario “S2”, both atmospheric CO2
concentration and climate factors were allowed to change over time. Models incorporating
the nitrogen cycle included temporal variations for both the S1 and S2 scenarios. For
scenario “S3”, land use was also allowed to change. The Land-Use Harmonization (LUH2)
product was the dominant land use and cover change driving the data used in scenario
“S3”. The LUH2 product was constructed from national agricultural land area data, but
was not constrained by forest area [31]. The LUH2 product showed a spurious temporal
signal of an abrupt increase in cropland area in China since the 1980 s and underestimated
the newly established forest area from 1990 to 2019 [32]. Therefore, the LUH2 product was
not used to analyze the impact of forest area, and the simulation result of scenario “S3” was
not used in this study.

2.2.3. Anthropogenic Factors

To analyze the correlation between the LAI and forest area, data related to forest area
were collected from the national forest resource inventory (NFRI) for each province. The
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6th, 7th, 8th, and 9th NFRIs covered the periods from 1999 to 2003, 2004 to 2008, 2009 to
2013, and 2014 to 2018, respectively. Meanwhile, a newly developed historical land cover
database [32] for China was used to reflect the vegetation coverage rate. The new data
incorporate land conversion signals from satellite images, field surveys, and report data;
the data can more accurately reflect land-use changes [32]. Additionally, based on the gross
domestic product (GDP) dataset, a key indicator of socioeconomic activities, we analyzed
the correlations between economic development and vegetation variations.

2.2.4. Meteorological Data

The models in the TRENDY project were driven using either monthly Climatic Re-
search Unit (CRU) [33] or 6 hourly CRU-Japanese 55-year Reanalysis (CRU-JRA55) [34]
dataset. The CRU-JRA55 was generated based on the JRA-55 [35] and CRU TS datasets.
Temperature, downward solar radiation, specific humidity, and precipitation in JRA-55
were aligned to the meteorological data in CRU TS (4.03). The other variables (e.g., atmo-
spheric pressure, downward long-wave radiation, and wind speed) were not modified.
The spatial resolution of CRU data was 0.5◦ × 0.5◦.

Additionally, temperature, precipitation, and downward solar radiation from the CRU
dataset were used to analyze the influencing factors of LAI.

2.3. Methods
2.3.1. LAI Normalization

The magnitudes of the satellite-based and simulated LAI values differed significantly.
To enable comparison of different LAIs, we normalized the LAIs. The normalized LAIs were
dimensionless but can capture the interannual percent change in origin satellite-observed
and simulated LAIs, which is the focus of this study.

The normalized MODIS LAI (LAIMODIS_normalized) can be obtained by dividing the
annual satellite-based LAI by the multi-year average satellite-based LAI:

LAIMODIS_normalized,year =
LAIMODIS,year

LAIMODIS
, (1)

where LAIMODIS_normalized,year and LAIMODIS,year represent the normalized and observed LAI
at a certain year (year = 2000, 2001, 2002, . . . ., 2019), respectively. (LAIMODIS) represents
the multi-year average satellite-based LAI.

For the simulated LAI, we first calculated the normalized LAI of each model referring
to the normalization method of MODIS LAI, then calculated the arithmetic mean of the
normalized LAI of each model to represent the normalized simulated LAI:

LAIi
Environmental_normalized,year =

LAIi
Environmental,year

LAIi
Environmental

, (2)

LAIEnvironmental_normalized,year = ∑n
i=1 LAIi

Environmental_normalized,year/n, (3)

where LAIEnvironmental_normalized,year is the normalized simulated LAI at a certain year acquired
from S2 scenario from TRENDYv9 project. LAIi

Environmental_normalized,year and

LAIi
Environmental,year is the normalized and simulated LAI for model i (i = 1, 2, 3, 4, 5)

at a certain year. LAIi
Environmental is the multi-year average simulated LAI of model i.

2.3.2. Quantify the Relative Contribution of Multiple Factors to the LAI Trend

By integrating the normalized MODIS LAI and normalized simulated LAI, we ex-
plored the biological and physical pathways affecting Loess Plateau ecosystem structures.
We hypothesized that the simulated results of the TRENDY project and MODIS observation
data are accurate and we ignored the uncertainties, then the normalized simulated LAI
calculated from the “S2” scenario of the TRENDY project can reflect the relative interannual
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change in the terrestrial ecosystem under the influence of environmental change (e.g.,
climatic change, CO2 fertilization, nitrogen deposition, etc.), and normalized MODIS LAI
can capture the influences of both environmental change and human land-use management.
Therefore, if the environmental signal was remoted from the MODIS LAI time series, the
residuals can be attributed to the effects of human land-use management at a certain year
(LAIHuman_normalized,year), that is:

LAIHuman_Normalized,year = LAIMODIS_Normalized,year − LAIEnvironmental_normalized,year, (4)

The trends of LAIMODIS_normalized,year, LAIEnvironmental_normalized,year, and LAIHuman_normalized,year
during the study period can be employed to represent the interannual change rates of actual
LAI (LAIMODIS_normalized), environmental-induced LAI (LAIEnvironmental_normalized), and human-
induced LAI (LAIHuman_normalized), respectively. The least-square linear regression was used
to determine the regression coefficients. A P value < 0.05 was considered significant. Addi-
tionally, we also evaluated the significance between the slopes of LAIEnvironmental_normalized and
LAIHuman_normalized changes from 2000 to 2019 by SPSS software. Notably, LAI variations that
cannot be directly attributed to environmental change were assumed to be explained by the
effects of human land-use management. Therefore, anthropogenic impacts can be both direct
and indirect via synergy with environmental factors [36].

Furthermore, the scenarios “S1” and “S2” acquired from the TRENDY project were
used to identify the impacts of CO2 fertilization and climate change. The direct effect of
CO2 fertilization ( CO2 fertilization-induced LAI) was reflected in scenario “S1”. The effect
of climate change (climate-induced LAI) was regarded as the difference between scenarios
“S2” and “S1”. The simulation results of scenarios “S2” and “S1” were both normalized
using the method described above.

A simple linear regression method was used to investigate trends in satellite-based
LAI, that is LAIMODIS, during the study period to reflect the actual vegetation change. A
P value < 0.05 was considered significant. The simple linear regression method was also used
to calculate the slopes of normalized LAI (e.g., LAIMODIS_normalized, LAIEnvironmental_normalized
and LAIHuman_normalized). The ratios of LAIEnvironmental_normalized slope to LAIMODIS_normalized
slope, and LAIHuman_normalized slope to LAIMODIS_normalized slope represent the relative con-
tributions of environmental factors and human land-use management to actual vegetation
greening, respectively. Meanwhile, the ratios of the normalized CO2 fertilization-induced
LAI slope to LAIEnvironmental_normalized slope, and normalized climate-induced LAI slope to
LAIEnvironmental_normalized slope represent the relative contributions of CO2 fertilization and
climate change to environmental-induced vegetation greening, respectively.

2.3.3. Statistical Methods

The spatial resolutions of satellite-based LAI, simulated LAI, and CRU meteorological
data are so different that they cannot be directly compared at the grid scale. Therefore,
we calculated the average LAI and meteorological values for the whole study area and
each province, and then we separated the influence of human land-use management and
environmental factors at the regional scale.

To investigate the response of interannual variation of LAI to climate change (i.e.,
temperature, precipitation, and download solar radiation), a partial correlation analysis
method was carried out on the climate-induced LAI.

3. Results
3.1. Actual Vegetation Changes Based on LAIMODIS

The LAIMODIS on the Loess Plateau shows a gradient, with decreasing values from
southeast to northwest (Figure 2). The LAIMODIS values were greater than 4 m2 m−2 in
the southeastern Loess Plateau, mainly due to the abundant precipitation, and woodland
was extensively distributed. Meanwhile, in the northwestern region, low annual precipita-
tion limited vegetation growth, and the dominant vegetation cover was grassland, with
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LAIMODIS generally below 0.5 m2 m−2. For the remaining regions, where farmland was
widely distributed, the LAIMODIS ranged from 1 to 4 m2 m−2.
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The multiyear average LAIMODIS for the Loess Plateau was 1.40 ± 0.23 m2 m−2

(mean ± standard deviation) during the study period (Figure 2b). The highest LAIMODIS
occurred in Henan Province, with a value of 2.14 ± 0.28 m2 m−2, followed by Shanxi
(1.86 ± 0.35 m2 m−2) and Shaanxi (1.79 ± 0.27 m2 m−2). Ningxia and Inner Mongolia
had relatively low LAIMODIS, with values of 0.71 ± 0.16 m2 m−2 and 0.64 ± 0.12 m2 m−2,
respectively, mainly due to the dry climate and low temperature. Moreover, LAIMODIS
varied widely among biomes (Figure S1a). Woodland showed the highest average LAIMODIS
(2.70 ± 0.06), which was more than twice that of farmland and grassland.

The LAIMODIS exhibited a significant positive trend (P < 0.01) across the study area
between 2000 and 2019, where the slope ± standard errors were 0.037 ± 0.006 m2 m−2 a−1,
and the change rate was 2.6% a−1 compared with the annual mean LAIMODIS. The
overall increasing trends of LAIMODIS were consistent for each province, and the pos-
itive trends were all significant at the 0.01 level (Figure 3b). The largest increase in
LAIMODIS was in Shanxi, with an annual increase of 0.057 ± 0.007 m2 m−2 a−1, fol-
lowed by Shaanxi (0.044 ± 0.005 m2 m−2 a−1), Henan (0.042 ± 0.009 m2 m−2 a−1), Gansu
(0.036 ± 0.006 m2 m−2 a−1), Ningxia (0.024 ± 0.005 m2 m−2 a−1), and Qinghai
(0.022 ± 0.006 m2 m−2 a−1). Inner Mongolia showed the lowest growth trend at
0.017 ± 0.004 m2 m−2 a−1. However, after normalizing the trends with the average LAIMODIS
values, Ningxia exhibited the largest rate of increase at 3.36% per year, followed by Shanxi
(3.05% a−1); Qinghai showed the lowest relative increasing trend, with a value of 1.33% a−1

(Figure S2). Among the different biomes, woodland exhibited the highest increasing trend,
with a value of 0.061 ± 0.009 m2 m−2 a−1, followed by farmland (0.038 ± 0.006 m2 m−2 a−1)
and grassland (0.033 ± 0.005 m2 m−2 a−1) (Figure S1b).

The spatial heterogeneity of the interannual LAIMODIS variation was shown in Figure 3.
More than 96% of the regions exhibited an upward trend in LAIMODIS, and approximately
76% of the regions showed a significantly and positively rising trend. The LAIMODIS in-
creased the most in the southeastern area of the study area (e.g., most parts of Shanxi, central
Shaanxi, and southeastern Gansu), with an annual increase of more than 0.10 m2 m−2 a−1;
moreover, a relatively low increase in growing season LAIMODIS occurred mainly on the
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northwestern Loess Plateau, with annual increase values below 0.01 m2 m−2 a−1. Addition-
ally, about 4% of the study area showed a downward LAIMODIS trend, mainly distributed
around cities such as Xi’an, Weinan, Baoji, Taiyuan, and Hohhot.
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3.2. Influences of Natural and Human Factors on Vegetation Changes

Simulated results obtained from the scenario S2 of TRENDY project indicated vegeta-
tion changes under the influence of environmental factors (Figure 4). All models showed sig-
nificant increases in the simulated LAIs due to the impact of environmental factors, but there
were large differences in its magnitudes, with values between 0.007 ± 0.006 m2 m−2 a−1

for the ISAM model and 0.046 ± 0.022 for the LPX-Bern model (Figure 4b). Moreover, we
found that the magnitudes of the multiyear average simulated LAIs also differed, with
values between 1.25 ± 0.14 m2 m−2 for the ORCHIDEEv3 model and 3.853 ± 0.46 m2 m−2

for the LPX-Bern model (Figure 4a).
We identified the relative contributions of environmental factors and human land-use

management to the actual vegetation change based on the normalized LAIs (Figure 5).
The LAIMODIS_normalized showed a distinct positive trend from 2000 to 2019 over the entire
study area, with an increased value of 0.026 ± 0.005 (P < 0.01), indicating significant actual
vegetation greening. LAIHuman_normalized showed a significant increasing trend, with a
value of 0.014 ± 0.004 (P < 0.01), explaining approximately 54% of the greening trend;
meanwhile, LAIEnvironmental_normalized also showed a significantly positive trend, with a
value of 0.012 ± 0.006 (P < 0.01), explaining 46% of the greening trend (Figure 5a). The
results indicated that environmental factors and human land-use management explained
46% and 54% of the actual vegetation changes, respectively. Additionally, the comparison
between slopes of LAIEnvironmental_normalized and LAIHuman_normalized from 2000 to 2019
showed no statistically significant difference (P > 0.05), indicating that the impact of
environmental changes and human land-use management may interact.
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For the different provinces (Figure 5b), human land-use management explained most
of the vegetation greening trend, ahead of environmental changes in Gansu, Ningxia,
Shaanxi, Shanxi, and Henan. Particularly in Gansu, Ningxia, and Shaanxi, the relative con-
tribution of human land-use management exceeded 63%. Moreover, for Qinghai and Inner
Mongolia, environmental change dominated the increasing trend of the actual vegetation
conditions. In Qinghai, environmental change contributed to 80% of the actual vegetation
increasing trend.

3.3. Effects of Different Environmental Factors on Vegetation Changes

Environmental change has markedly altered the dynamics of terrestrial vegetation.
For all the study regions, CO2 fertilization effects and nitrogen deposition explained 55%
of the environmental change-driven greening trend from 2000 to 2019, while climate
change explained 45% (Figure 6a). The influences of different environmental factors on
vegetation growth exhibited large spatial heterogeneity. For the eastern Loess Plateau,
CO2 fertilization dominated the greening trend caused by environmental change, with the
relative contributions of 74%, 61%, and 52% by Henan, Shanxi, and Shaanxi, respectively.
For the western of study area, climate changes dominated the greening trend caused by
environmental factors, and the relative contributions of Inner Mongolia, Ningxia, Gansu,
and Qinghai were greater than 60%, which can be primarily ascribed to the dry climate in
this area.
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Figure 5. The influences of natural and anthropogenic factors on vegetation change in the Loess
Plateau during 2000–2019. (a) The relative interannual trends of actual LAI (LAIMODIS_normalized),
environmental change-induced LAI (LAIEnvironmental_normalized) and human land-use management-
induced LAI (LAIHuman_normalized). Anomalies were calculated as the difference between the normal-
ized LAI for a given year and the average value during the study period. (b) The relative contribution
of environmental change and human land-use management to the actual LAI trends for each province.

Furthermore, we investigated the influences of climatic variables on greening trends.
Climate-induced LAI were significantly and positively correlated with solar radiation
(R = 0.75) and precipitation (R = 0.54) across the whole study area. The correlations between
climate-induced LAI and climatic variables varied across provinces (Figure 6b). Specifically,
downscaled solar radiation dominated the interannual climate-induced LAI variation in
Shanxi, Shaanxi, Henan, and Qinghai, which have relatively abundant precipitation or large
areas with irrigation. Moreover, precipitation was the dominant driver in Inner Mongolia,
Gansu, and Ningxia, which can be ascribed to the dry climate.
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3.4. Relationship between Actual Vegetation Growth and Forest Area

The relationship between forest area and LAIMODIS_normalized variations is shown in
Figure 7. The changes in forest area were significantly and positively correlated with the
LAIMODIS_normalized, with an explanatory value of 83% for the whole Loess Plateau, suggest-
ing that the increase in forest area is a main underlying driver for the observed vegetation
greening trend. Moreover, the relationships between forest area and LAIMODIS_normalized
were consistent among provinces, explaining more than 60% of the variability; in particular,
for Ningxia, Shaanxi, and Shanxi, the relationship explained more than 96% of the variabil-
ity in LAIMODIS_normalized (Figure 7b). The interannual variability in forested areas, which
was acquired from the 6th to the 9th national forest resource inventory, was consistent with
the trend of LAIMODIS_normalized in Shanxi and Shaanxi Provinces (Figure 7c,d).
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4. Discussion
4.1. Vegetation Greening Trend

Compared with other vegetation indexes, the leaf area index has a well-defined
physical meaning in vegetation [1]. The leaf area index can be obtained from satellite
products and is a simulated state variable in process-based models. Integrating satellite-
based and simulated data from dynamic global vegetation models can attribute vegetation
dynamics to different driving factors [2,13]. However, leaf area index values simulated by
different models differed because of different assumptions and parameters [6], which led
to uncertainties in the attribution analysis. Using simulation results from multiple models
simultaneously can reduce the uncertainties [37]. Therefore, integration of remote sensing
data with simulated results from multiple process-based models can improve the accuracy
of attribution analysis.

Satellite-based data revealed increasing greenness in terrestrial ecosystems globally [1],
with approximately 33% of the vegetated area turning green, and the leaf area increased
by 2.3% per decade [14]. China, especially the Loess Plateau, showed a strong greening
trend [26,27]. Specifically, approximately 76% of the regions exhibited a significant upward
trend in LAIMODIS since 2000 (P < 0.05), with a net increase rate of 27.1% in leaf area
per decade, which was much higher than the global average. Meanwhile, there were
spatiotemporal variations in greening across the study area. The LAIMODIS increased
significantly in the central and southeastern Loess Plateau and decreased around large
cities. Thus, vegetation on the Loess Plateau generally exhibited greening trends, but some
parts showed a brown trend.

4.2. Contributions of Multiple Factors to Vegetation Greening

Inferred human land-use management and environmental change jointly altered
vegetation variations [1]. Intensive land use explained more than one-third of the observed
greening trend at the global scale, with forests and croplands explaining 42% and 32% of
the large-scale greening in China, respectively [14]. The Loess Plateau is one of the most
noticeable greening areas in China, and human land-use management (such as ecological
projects, cropland irrigation, population, etc.) has contributed 54% of the greening trends.
The sharp increase in forest area caused by ecological projects such as Grain for Green has
greatly promoted the vegetation greening trend [25,38]; the interannual trends of 5 years
smoothing LAIMODIS_normalized and forest coverage rate were similar (Figure 8). Cropland
irrigation has also significantly contributed to the vegetation greening trend in the Loess
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Plateau [27]. The middle and upper reaches of the Yellow River Basin (covering most area
of the Loess Plateau) have exhibited a significant expansion of irrigated farmland, yet
rainfed croplands were the dominant sources of irrigation expansion [39]. Additionally,
GDP and population have also affected vegetation restoration (Figure 9). A large number of
farm laborers have moved from the countryside to relatively lucrative city jobs, which has
reduced human pressure on rural areas and promoted GDP [40,41]. Moreover, prohibiting
practices damaging grasslands through fencing and grazing exclusion has helped protect
ecologically important grassland zones [42].
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Globally, the ensemble model with results simulated by the TRENDY project suggest
that increasing atmospheric CO2 accounts for approximately 70% of the vegetation greening
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trend, while climate change only explains 8% [13]. Meanwhile, CO2 fertilization accounts
for 55% of the environmental-induced greening trend on the Loess Plateau, and climate
change explains 45%. The Loess Plateau has a higher sensitivity to climate change compared
with other areas on the global scale. Spatially, for the areas with relatively high leaf area
(e.g., Henan, Shaanxi, and Shanxi), CO2 fertilization is the major indirect driving factor
for the greening trend because rising CO2 concentrations can enhance photosynthesis [43]
and extend the growth season [44]. Precipitation dominates vegetation variation in water-
limited ecosystems (e.g., northwestern Loess Plateau) [9,28], and radiation is the main
climate factor on the southeastern Loess Plateau. Additionally, rising CO2 concentrations
allow plants to operate at lower leaf stomata openings, which can conserve soil moisture
and allow plants to grow a little longer into a drought cycle (e.g., Inner Mongolia, Ningxia,
and Gansu) [9,45].

4.3. Limitations and Uncertainties

This study focused on trends in satellite and simulated data to quantify the impact of
multiple drivers on vegetation change. However, whether the differences between satellite-
observed and simulated LAIs can be directly attributed to human land-use management is
debatable. This study was not a factorial experiment and there was an assumption made
that MODIS LAI variation can be decomposed (TRENDY-based) environmental variation
and residual variation that is attributed to human activities. The histograms of multi-year
average LAIMODIS_normalized and LAIEnvironmental_normalized are compared in Figure 10. Both
LAIMODIS_normalized and LAIEnvironmental_normalized were close to normally distributed, but
the distribution of LAIEnvironmental_normalized was more concentrated, the proportion of a
normal distribution between 0.90 and 1.1 was 66%, while LAIMODIS_normalized was 52%;
when considering the normalized LAI above 1.2, the proportion of LAIMODIS_normalized
was higher than that of LAIEnvironmental_normalized, with values of 12% and 4%, respectively
(Figure 10a). The distribution frequency of different models was similar (Figure 10b).
Additionally, several studies have investigated key drivers of vegetation variations through
combing satellite-observed and simulated data [2,13]. However, the over-sensitivity of
models to atmospheric CO2 has led to a satellite-derived productivity increase in less
than half of the model-derived productivity rises during the past decades at the global
scale [46], which implies a negative impact of anthropogenic activities if the trends are
directly compared. For the Chinese terrestrial ecosystem, the average trend of satellite-
observed LAI is greater than the trend of LAI estimated by models in 25 of 31 provinces,
which can be partly explained by human activities, such as afforestation [37]. The research
suggests that the comparison of satellite-observed and simulated LAI trends can partly
explain the impacts of human land-use management in China.

Additionally, we must acknowledge that atmospheric CO2 concentration and climate
change are also significantly affected by human land-use management; therefore, anthro-
pogenic factors might have greater influences than the value estimated in this study. Almost
all the leaf areas simulated by process-based models exhibited uncertainties arising from
model structure and parameter choices [37]. Therefore, the integrated simulated results
from five models were used to separate the effects of different environmental factors on
vegetation growth in this study. Additionally, the spatial resolutions mismatch between
simulated and satellite-observed datasets increases the uncertainties; therefore, we con-
ducted the analysis at the provincial level, which can help to reduce the impact of mismatch
between spatial resolutions.
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5. Conclusions

This study quantitatively assesses the drivers of vegetation growth in the Loess Plataea
during the past decades through integrating satellite-derived LAI and simulated LAI from
dynamic global vegetation models. The results showed that vegetation had an average
annual increase of 0.037 ± 0.006 m2 m−2 a−1 (P < 0.01). Human land-use management and
environmental change jointly promoted vegetation restoration, with explanatory rates of
54% and 46%, respectively. CO2 fertilization explained 55% of the greening trend caused
by environmental change from 2000 to 2019, whereas climate change contributed 45%.
Furthermore, solar radiation and precipitation dominated the climate-induced vegetation
restoration (P < 0.05).
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on the Loess Plateau. ** represents P < 0.01. (b) Interannual trend of LAIMODIS for each biome on the
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provinces on the Loess Plateau from 2000 to 2019.
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