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Abstract Antarctica is the largest reservoir of ice on Earth. Understanding its ice sheet dynamics is
crucial to unraveling past global climate change and making robust climatic and sea level predictions.
Of the basic parameters that shape and control ice flow, the most poorly known is geothermal heat flux.
Direct observations of heat flux are difficult to obtain in Antarctica, and until now continent-wide heat
flux maps have only been derived from low-resolution satellite magnetic and seismological data. We
present a high-resolution heat flux map and associated uncertainty derived from spectral analysis of the
most advanced continental compilation of airborne magnetic data. Small-scale spatial variability and
features consistent with known geology are better reproduced than in previous models, between 36%
and 50%. Our high-resolution heat flux map and its uncertainty distribution provide an important new
boundary condition to be used in studies on future subglacial hydrology, ice sheet dynamics, and sea
level change.

1. Introduction

Geothermal heat flux depends on several geological factors including heat flux from themantle, heat produc-
tion in the crust by radioactive decay, and tectonic history (Pollack et al., 1993). The heat flux underneath the
Antarctic Ice Sheet is an important boundary condition for ice sheet behavior and associated sea level change
(Golledge et al., 2015) since it keeps basal ice relatively warm, and thus less viscous than colder ice above, and
helps supply meltwater at the ice sheet base. This allows for rapid ice flow by sliding over the bed and
deformation of the subglacial sediments.

Although heat flux is an important parameter, direct and precise measurements over Antarctica are few,
localized and difficult to acquire (Fisher et al., 2015; Hasterok, 2010) since >99% of the continent is covered
by ice and the bed can be covered by up to 4 km of ice (Fretwell et al., 2013). Indirect estimates of heat flux
derived from temperature profiles in the ice are complicated by frictional heating within the ice and at the ice
bed interface as well as the inherited signal from temperature changes over recent and longer glacial time
scales (Zagorodnov et al., 2012).

Three main Antarctic-wide heat flux maps have been previously proposed based on satellite magnetic or
seismological data (An et al., 2015a; Fox Maule et al., 2005; Shapiro & Ritzwoller, 2004). All were regional
estimates derived from low-resolution data showing contradictory and conflicting results. To improve the
spatial resolution and the precision of this critical parameter, we derived the first continent-wide heat flux
map using airborne magnetic data across Antarctica (Figure 1).

2. Materials and Methods

Our method is based on the fact that ferromagnetic materials retain their magnetism only until reaching the
Curie temperature, which is found at the Curie depth and below which all rocks are nonmagnetic. The domi-
nant ferromagnetic mineral in the Earth’s crust is magnetite, which has a Curie temperature of 580°C (853 K)
(Lanza & Meloni, 2006), so the deepest crustal magnetic source provides an estimate of the depth to the
magnetite Curie depth and hence the 580°C isotherm. From this depth, geothermal heat flux at the surface
can be estimated using a thermal model.
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2.1. Magnetic Compilation

To produce our Antarctic-wide compilation of magnetic anomalies, we
used (Table S1) the following: all the publicly available aeromagnetic data
for the Antarctic continent and surrounding areas: ADMAP (Golynsky et al.,
2001), WISE (Ferraccioli et al., 2009), AFI-Coats Land (Bamber et al., 2006),
AGAP (Ferraccioli et al., 2011), PPT (Studinger et al., 2006), ICECAP (Aitken
et al., 2014), Central TAM (Goodge & Finn, 2010), and Weddell Sea
(Jordan et al., 2017); a reprocessed version of a compilation over
Dronning Maud Land (Mieth & Jokat, 2014) and ICEGRAV2013 (Forsberg
et al., 2017); and satellite magnetic data from the Magnetic Field Model
MF7 (MF7) (Maus, 2010).

All magnetic anomalies from airborne surveys were upward continued
(i.e., values are extrapolated to certain altitude based on a mathematical
operator, Telford et al., 1990) to 5 km height and had MF7 as a reference
level. The long wavelength content (>150 km) related to the maximum
resolution of the satellite data was filtered from all surveys before the data
were merged following the WDMAM 2.0 procedure (Catalán et al., 2016;
Lesur et al., 2016). The 5 km resolution is based on the lowest resolution
provided by the airborne data. Finally, the long wavelength signal from
satellite data was introduced for the whole compilation and also to
provide coverage in the gaps.

2.2. Curie Depth Estimate and Its Uncertainty

Magnetic anomalies are sensitive to the thermal profile of the lithosphere.
Under certain conditions spectral analysis is able to determine depths of

magnetic discontinuities (Spector & Grant, 1970). We take advantage of this to derive Curie depth estimates
from the magnetic anomaly data. There are different techniques to estimate the base of the magnetic
sources (Ravat et al., 2007). We selected the defractal spectral method (Figure S1 in the supporting informa-
tion, flowchart of the procedure) as it is appropriate for regional compilations of magnetic anomalies and it
has been extensively used elsewhere to estimate the Curie depth (Bouligand et al., 2009; Khojamli et al., 2017;
Okubo &Matsunaga, 1994; Salem et al., 2014). All these techniques use the same approximation based on the
existence of a linear relationship between the spectral power density and specific wave number ranges. This
allows us to estimate the depth to the top and the depth to the centroid of the magnetic sources. To infer the
Curie depth, we used a three-step procedure described in detailed in the supporting information. First, we
estimate the depth to the top of the deepest magnetic body, Zt; second, we estimate the centroid depth
of the deepest magnetic body, Zo (Figure S2). Finally, the Curie depth or depth to the bottom of the magnetic
source, Zb, is inferred by a simple mathematical relationship.

The defractal spectral method does not assume a random and uncorrelated distribution of sources, but
follows a fractal/scale distribution (Bansal et al., 2011; Maus & Dimri, 1996). This considers that there is a
relationship between the observed power spectral density and the power spectral density of the random
magnetization model (1):

PR kx; ky
� � ¼ PF kx; ky

� �
·kα; (1)

where PF (kx, ky) is the observed power spectrum, PR(kx, ky) represents the power spectrum due to random
magnetization modeling, k is referred to radial wave number, and α denotes the fractal parameter. The fractal
parameter, α, is related to the fractal parameter of magnetization, β, by α = β � 1.

If the fractal parameter is known, once the fractal effect of themagnetization spectrumwas removed, we esti-
mated the depth to the top, Zt, and depth to the centroid, Zo, of the magnetic sources following the proce-
dure of Tanaka et al. (1999), which is known as the centroid spectral method. This is appropriate for regional
compilations of magnetic anomalies and has been extensively used to estimate Curie depths (Bouligand
et al., 2009; Khojamli et al., 2017; Li, 2011; Li et al., 2009, 2010; Ravat et al., 2007; Salazar et al., 2017; Salem
et al., 2014; Tanaka et al., 1999; Vargas et al., 2015).

Figure 1. New magnetic anomaly compilation for Antarctica and surround-
ing areas. G, gap in the airborne data filled using MF7.
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Once the windows size and the wave number ranges were determined (supporting information), we calcu-
lated the best fit for the fractal parameter α. This value is not known, and as it strongly correlated with the
depth to the top (Bouligand et al., 2009), and there is no direct way but an iterative process to get it. We
followed an iterative process where we checked different values for α and selected the best fit between
the random magnetization model spectrum and the synthetic spectrum. After testing values of α ranging
from 0 to 2 on 0.1 steps, we obtained the best fit between the random magnetization model spectrum
and the synthetic spectrum for α = 0.2. Values of α > 2 over correct the spectra providing unreliable shallow
Curie depths values.

Finally, we integrated our point estimates of Curie depth into 15 km resolution maps for East Antarctica (EA)
and West Antarctica (WA). EA and WA were treated separately since they present different radial average
power density spectra (Figure S3) due to their differences in geology and evolution (Dalziel & Elliot, 1982).
The results derived for each region were then combined in one single grid along the geological and geophy-
sical boundary observed and described by satellite gravity (Block et al., 2009), seismology (An et al., 2015b),
topography (Fretwell et al., 2013), and geological data (Dalziel & Elliot, 1982) (Figure 2a).

The uncertainties in the Curie depth estimate (Figure 2b), ΔZb, were based on the uncertainties in fit when
deriving Zt and Zo using the spectral method (2) and were calculated as follows:

ΔZb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΔZo

2 þ ΔZt
2:

q
(2)

2.3. Heat Flux and Its Uncertainty

To determine the heat flux distribution over the Antarctic continent, we assume the 1-D heat conduc-
tion equation under the steady state condition, no lateral variations of properties and that heat
production is considered continuous in the lithosphere and decreases exponentially with depth
(Turcotte & Schubert, 2002):

K
∂2T zð Þ
∂z2

¼ �H0e
� z�z0ð Þ�

hr ; (3)

where K is thermal conductivity, T is temperature, z is depth, H0 is the heat production at the surface, and hr is
the scale depth.

Integrating this equation twice, we obtained the temperature profile, which is related to the heat flux:

Figure 2. Curie depth and its uncertainty. (a) Curie depth map. Dashed line: boundary between East and West Antarctica considering satellite gravity, seismology,
topography, and geology information. (b) Uncertainty distribution for curie depth. G, gap in the airborne data.
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q zð Þ ¼ �K
∂T zð Þ
∂z

: (4)

Assuming the boundary conditions that at the Curie depth, Zb, the temperature is the Curie temperature, Tc
(853 K), and at the bedrock (Fretwell et al., 2013), z = Z0, the temperature is T0 (273 K), we solved the equa-
tion (4) for the heat flux at the surface, in this case at the bedrock ice interface:

qs ¼ �K
∂T zð Þ
∂z

����
z¼Z0

¼ �K Tc � T0ð Þ
Zb � Z0

� H0hr þ H0h
2
r

Zb � Z0
1� e � Zb�Z0ð Þ=hrð Þ

� �
: (5)

A Curie temperature of 853 K reflects the temperature at which magnetite loses its ferromagnetic properties.
A bedrock temperature of 273 K (0°C) is consistent with the observation and numerical predictions of exten-
sive hydrological system beneath the Antarctic ice sheet (Jamieson et al., 2010; Siegert et al., 2005).

The initial values for the thermal parameters were based on typical values measured in nature (Sandiford &
McLaren, 2002). Representative values for the entire Antarctic continent were further optimized in this study
by comparing model outputs with direct heat flux measurements (Fisher et al., 2015; Hasterok, 2010), esti-
mates from ice temperature profiles (Price et al., 2002) and other, more indirect methodologies including
ice balance and studies of ice internal structure in Antarctica (Carter et al., 2009; Raymond, 2000; Schröeder
et al., 2014) (Table S2). These data are very rare in Antarctica and sometimes not very reliable due to difficul-
ties during measuring associated with melting ice (Zagorodnov et al., 2012). Table S2 and Figure 3 show
details of these data. After optimization assumed continent-wide thermal parameters were K = 2.8 W/mK,
H0 = 2.5 · 10�6 W/m3 and hr = 8 km.

Figure 3. Geothermal heat flux distribution at the ice-rock interface superimposed on subglacial topography. Table S2 shows details of the local values. BS, Byrd
Station; LW, Lake Whillans; SD, Siple dome; and WASID, West Antarctic Ice Sheet Divide.
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The formal uncertainty distribution of the heat flux (Figure S4) is calculated using the propagation equation
for independent uncertainties (6). These uncertainties are calculated considering a maximum range of values
for the thermal parameters that play an important role in the heat equation.

Δqs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂qs
∂K

ΔK
	 
2

þ ∂qs
∂hr

Δhr

	 
2

þ ∂qs
∂Zb

ΔZb

	 
2

:

s
(6)

We considered the spatially varying uncertainties in Zb estimates, the uncertainty contribution of considering
a constant value of hr (where Δhr=±3 km), and the uncertainties for using a constant value for the thermal
conductivity, K, which is expected to be 10 mW/m2 (Fox Maule et al., 2005). The uncertainties related to
different values of temperature at bedrock elevation are considered very small and hence neglected since
most of the Antarctic continent is at 273 K or very close to this value in the rock-ice interface (Jamieson et al.,
2010; Pattyn, 2010; Siegert et al., 2005). The uncertainties related to applying constant values for parameters
such as K and hr are considered primary sources of error since they are on the same order than the final
estimated uncertainty (see supporting information), while the fact of considering a constant bedrock
temperature is considered a secondary source of error.

3. Curie Depth and Geothermal Heat Flux Maps Description

We found that our estimated Curie depths are greater in EA than in WA, ranging from 22 to 63 km and from 8
to 32 km, respectively as expected based on seismic estimates of crustal thickness (An et al., 2015b). In EA the
thicker regions are located toward the interior, while Victoria Land, George V Land, Queen Mary Land, the
Lambert Rift region, and the coastal part of DronningMaud Land are characterized by shallower Curie depths.
The shallower Curie depths in WA are found in the West Antarctic Rift System and the Antarctic Peninsula. As
our spectral analysis is optimized for airborne data, higher uncertainties are concentrated in areas of poor air-
borne coverage and gaps (Figures 1 and 2b), where the Curie depth cannot be resolved at the
same resolution.

The heat flux map (Figure 3) indicates values ranging from 42 to 180 mW/m2 with an average of
68 mW/m2, which is close to the global continental average of 65 mW/m2 (Pollack et al., 1993). High values
(65–180 mW/m2) are located in WA especially in the West Antarctic Rift system (maximum of 130 mW/m2)
and the Antarctic Peninsula (maximum of 170 mW/m2). EA is characterized by low values (45–85 mW/m2),
especially in the central part. The uncertainty calculation indicates low values, around 10 mW/m2, with small
regions of higher uncertainties (Figure S4). The standard deviation is 3 mW/m2.

4. Discussion and Model Validation

Our heat flux results are very close to or within uncertainty compared to the heat flux measurements and
other heat flux estimates (Carson et al., 2014; Carter et al., 2009; Clow et al., 2012; Dahl-Jensen et al., 1999;
Damiani et al., 2014; Decker & Bucher, 1982; Dmitriev et al., 2016; Engelhardt, 2004; Fisher et al., 2015; Gow
et al., 1968; Hasterok, 2010; Hondoh et al., 2002; Morin et al., 2010; Nicholls & Paren, 1993; Parrenin, 2016;
Price et al., 2002; Raymond, 2000; Risk & Hochstein, 1974; Ritz et al., 2010; Salamatin et al., 1998; Schröeder
et al., 2014, 2011; Zagorodnov et al., 2012) (Table S2). For example, values for Vostok (Salamatin et al.,
1998) and South Pole (Price et al., 2002) are calculated to be 50–56 mW/m2 and 61 mW/m2, respectively,
while our results show values of 52 and 59 mW/m2 for these two regions. Similar comparisons can be made
for the heat flux obtained with our spectral method and values derived from ice flow/balance modeling
(Raymond, 2000), analyzes of the hydrology (Schröeder et al., 2014), and airborne radar (Parrenin, 2016).
Our results are in good agreement, for example, with Thwaites Glacier (Schröeder et al., 2014) and Siple
Coast (Raymond, 2000), which are both characterized by high values (80–100 mW/m2).

Our model is in agreement with previous studies (An et al., 2015a; Fox Maule et al., 2005; Shapiro & Ritzwoller,
2004) with respect to principal differences between EA and WA (Figure 4). However, we further resolve differ-
ences between the Antarctic Peninsula and the West Antarctic Rift System and show that EA exhibits higher
spatial variability than previously proposed. The study by An et al. (2015a), based on seismology, indicates
high heat flux observed in the western coast of WA related to a Mesozoic subduction system. Our results
do not image this feature and instead show that the high heat flux is associated with the West Antarctic
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Rift system noted by Fox Maule et al. (2005). The differences likely result from the lower resolution of the data
source and the sparse seismic stations used to calculate the Curie depth by seismology (An et al., 2015a).
Direct comparison of our method with the seismic inversion is not straightforward as the seismic method
is based on inversion of a mechanical model, while our method more directly estimates the depth of the
thermal discontinuity. Our distribution represents the subglacial geology better than the previous one, for
example, identifying high heat flux in rift systems (Golynsky & Golynsky, 2007) and volcanic regions
(LeMasurier & Thomson, 1990). Figure 4 shows the differences between the four models in the Lambert
Rift and the West Antarctic Rift system. Our map shows elevated heat flux in the location of the rifts, while

Figure 4. (a–d) Comparison of heat flux maps. (e and f) Comparisons of the four maps in the Lambert Rift and in the West Antarctic Rift System.
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the other models show either a low or a flat signal. The Antarctic Peninsula shows higher spatial variability
and amplitude in our study, while that is not the case in previous proposed maps. A recent model from
the Antarctic Peninsula (Burton-Johnson et al., 2017) based on heat production values from rock samples
and the crustal model by An et al. (2015b) has some resemblance with our map in the same region in terms
of the distribution of heat flux values. Elevated heat flux is found in the eastern part of the Antarctic Peninsula,
while low values are in the west and northern tip in both maps. However, the higher differences are concen-
trated in the central part of the Antarctic Peninsula. A local measurement of 88 mW/m2

fits very well with our
model (92 mW/m2), while it almost double the one obtained by Burton-Johnson et al. (2017).

To check our heat flux uncertainty estimate, we have compared our results with the most complete compila-
tion of independent sources such as local heat flux measurements (Fisher et al., 2015; Hasterok, 2010),
temperature profiles (Price et al., 2002; Salamatin et al., 1998), and heat flux values derived from ice
flow/balance modeling, analyzes of the hydrology, and airborne radar data in different locations of
Antarctica (Carter et al., 2009; Raymond, 2000; Schröeder et al., 2014) (Table S2). Our heat flux map was
calculated from representative Curie depth values derived from spectral analysis performed over multiple
overlapping windows optimized for analysis of the aeromagnetic data. This means that these average heat
flux values cannot strictly be compared with local measurements. Having this in mind, we discarded those
local heat flux values which are far outside the expected values, even for young crust, as these most likely
reflect very localized geothermal perturbations rather than the regional representative average for an area
(e.g., values such as 285 mW/m2 located in Lake Whillans). We also discarded local heat flux values located
in areas with high gradient of magnetic anomaly signal, Curie depth, heat flux, and topography as they are
not located in regions that are representative of the mean value of an area. Accordingly, we did not consider
some of the values obtained in WA, such as some in Lake Whillans, Bird Station, Siple Dome, and West
Antarctic Ice Sheet Divide. The majority of these omitted values are very high and are considered to be local
anomalies. Finally, we compared the remaining local heat flux estimates with our results. We obtained amean
difference of 1.4 mW/m2 and a standard deviation of 14 mW/m2. Using these as representative of the preci-
sion of our heat flux map, we can compare it with our mean uncertainty estimate for these specific locations
(13 mW/m2) and the mean error budget calculated for the local values obtained through the different meth-
odologies (13 mW/m2). They show a reasonable agreement in support of our calculation of the uncertainty.

We carried out the same procedure of comparison between the previous proposed maps (An et al., 2015a;
Fox Maule et al., 2005; Shapiro & Ritzwoller, 2004) (Figure 4) and the independent local geothermal heat flux
estimates. The highest standard deviation was found for the most recent study (An et al., 2015a) (Figure 4c).
Although the oldest study (Shapiro & Ritzwoller, 2004) (Figure 4d) shows the largest mean difference, the
standard deviation is lower than Fox Maule et al. (2005) and An et al. (2015a) (Figures 4b and 4c), indicating
the broad pattern of spatial variation is resolved. According with these statistics, our results show an internal
coherency with the independent local estimates of spatial variations in geothermal heat flux between 36 and
50% better than previously proposed distributions (Table S3).

Our new map has significant value across key areas of research, including tectonics, subglacial lake distribu-
tion, subglacial hydrology, ice core site selection, and ice sheet and sea level modeling. Elevated heat flux
values (~80–180 mW/m2) are consistent with the presence of volcanic regions (LeMasurier & Thomson,
1990) and relatively recent (Mesozoic to Cenozoic) (Pollack et al., 1993) tectonic activity in WA. EA is charac-
terized by low values (30–60 mW/m2), as expected for a dominantly cratonic region (Dalziel & Elliot, 1982;
Pollack et al., 1993). However, the coastal part of Queen Mary Land, the Lambert Rift, and Victoria Land show
higher values that may provide further evidence for Cenozoic processes (Pollack et al., 1993) occurring in EA,
including volcanism (LeMasurier & Thomson, 1990), uplift (Hambrey & McKelvey, 2000), or extension
(Faccenna et al., 2008).

The existence and distribution of hundreds of lakes underneath the ice sheet is well known (Wright & Siegert,
2012), and studies based on thermal regime above the subglacial lakes require heat fluxes of>54 mW/m2 to
maintain basal ice at the pressure-melting point in the interior of EA and even higher values in coastal parts
including Terra Adelie and George V Land (Siegert & Dowdeswell, 1996). Our results confirm that heat flux is
high enough to support an active hydrological system. In addition, our new high-resolution heat flux map
and its uncertainties will provide more precise estimates of basal temperature and the extent of melting
ice at the base of the ice sheet (Van Liefferinge & Pattyn, 2013), which, in turn, will help providing more
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realistic models of ice stream dynamics and improve the knowledge on subglacial hydrology distribution
across the continent.

Palaeoclimate researchers are searching for optimum sites to acquire ice cores containing climate records
>800,000 years old (Jouzel et al., 2007) to study the change in pacing of glacial cycles associated with the
dramatic mid-Pleistocene climatic transition (Elderfield et al., 2012). Modeling to identify the best sites
primarily requires knowledge of ice thickness and basal heat flux (Van Liefferinge & Pattyn, 2013). Our map
provides the first regionally consistent high-resolution estimates of geothermal heat flux across all the
proposed target drill sites. Generally, low values are recovered in EA but variations of up to 20% occur
between the key candidate sites (Dome F (65 ± 12 mW/m2), South Pole (59 ± 11 mW/m2), Dome C
(58 ± 12 mW/m2), Dome A (55 ± 11 mW/m2) and Vostok (52 ± 12 mW/m2)), which may be significant for
site selection.

Ice sheet models are crucial for estimating the Antarctic contribution to past and future global sea level
changes (Golledge et al., 2015). There are two main techniques for establishing basal boundary conditions
for such models. Inversion technique estimates basal conditions such as the basal traction coefficients from
observed ice flow velocities (Arthern et al., 2015). The alternative forward modeling approach imposes
specific parameters, including geothermal heat flux, which is the least known in terms of its spatial variability
on the continent. In most ways the second approach is preferable, and our new results may make this
technique more feasible.

5. Conclusions

Our method of reproducing the heat flux distribution for the Antarctic continent is 36–50% better (see
section 2 and Table S3) and reproduces geological variations more reasonably than previous methods, which
were based on low-resolution and/or scarce data. Also, we calculated, for first time, the uncertainty distribu-
tion. Additionally, our thermal model is the first to consider the available local values from the continent
(Table S2). Our results have the potential to contribute to more realistic and precise studies of subglacial
hydrology distribution, improved ice core site selection, and enhance ice sheet and sea level modeling to
better reconstruct past and predict future changes.
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